INTRODUCTION TO PSPICE

A QUICK GUIDE TO USING PSPICE 9.2

by

Larry J. Klingenberg

School of Engineering and Computer Science
San Francisco State University

January 2002
TABLE OF CONTENTS

INSTALL PSPICE FROM THE CD ROM ...1

 INITIALIZE GROUND REFERENCE FOR FIRST TIME USE2

 ADD PSPICE LIBRARIES ...5

START A NEW PSPICE SCHEMATIC ..8

 PLACE PARTS IN SCHEMATIC ...10

 SELECT PARTS FOR MOVING, DELETING, ROTATING13

 WIRE PARTS TOGETHER ..14

 CHANGE A PART'S VALUE OR NAME ..15

OPEN AN EXISTING SCHEMATIC ..16

CHANGE A PART'S MODEL PARAMETERS ..18

CREATE A ± POWER SUPPLY WITH NET ALIAS20

 POWER SUPPLY CONNECTIONS ..20

 CIRCUIT CONNECTIONS ..21

COPY A PSPICE SCHEMATIC INTO A WORD DOCUMENT22

COPY A PSPICE WAVEFORM INTO A WORD DOCUMENT24

DC NODAL ANALYSIS ..25

TRANSIENT ANALYSIS ...27

 USE ALIASES TO IDENTIFY CIRCUIT AREAS ..27

 ESTABLISH PARAMETERS (PROFILE) FOR TRANSIENT ANALYSIS29

 CREATE TRANSIENT ANALYSIS PLOT ..30

CREATE A STEP VOLTAGE SOURCE ..32

Introduction to PSpice
CREATE A REPEATING VOLTAGE SOURCE ... 33
CREATE AN IMPULSE ... 35
CREATE A SQUARE WAVE ... 35
CREATE A TRIANGULAR WAVE ... 35
DC SWEEP .. 36
ESTABLISH PARAMETERS (PROFILE) FOR DC SWEEP 37
CREATE DC SWEEP PLOT ... 38
CHANGE AXIS FROM LINEAR TO LOG PLOT .. 40
DC SWEEP – FAMILY OF CURVES ... 41
PRIMARY SWEEP .. 42
SECONDARY SWEEP .. 43
PLOT FAMILY OF CURVES ... 44
AC SWEEP .. 46
AC SWEEP – BODE PLOTS .. 48
PARAMETRIC PLOT .. 51
PLACE TEXT, LINES, ARROWS, ETC. IN THE PLOTS .. 55
USING CURSORS IN THE PLOT .. 56
MARK CURSOR COORDINATES INTO THE PLOT .. 57
To install PSpice from the CD ROM, insert the CD into the computer. The installation program will auto-start.

- Check Capture, PSpice, and Layout in the installation process.
- Select Next > on this screen and the following screens until installation is complete.

Once you have selected the appropriate installation option(s), click Next to continue. Click Cancel to exit.
INITIALIZE GROUND REFERENCE FOR FIRST TIME USE

- When PSpice is initially installed (for the first time from the CDROM), the “Ground” reference must be configured so circuits can be simulated. The default “Ground” with the installation will not work for simulations. First start a new PSpice schematic (page 8).
- To install the proper ground, Select **Place → Ground**.

 - Highlight **CAPSYM**; Select **Remove Library** to remove these symbols.
 - Select **Add Library** to access Library folder.
When the Library folder appears, double click to open the PSpice folder.

- **Note**: Only the libraries located in the PSpice folder will work with simulations. The other libraries in the Library folder can be used for the convenience of drawing schematics when simulation is not required.
o In the PSpice folder, select source.olb; select Open. This adds the library that contains a Ground reference that is compatible with simulations.

In the “Place Ground” screen that follows there are three choices: D_HI, D_LO, and 0. Always select the “0” for the ground reference on schematics that you create.

o Select Cancel to quit. The initialization process for the ground reference is complete.

o The ground configuration process will not have to be performed again unless PSpice is reinstalled.
ADD PSPICE LIBRARIES

- To install the most commonly used libraries, select Place → Part.
- Select Add Library to bring up the PSpice library screen.
In the PSpice library, select `analog.olb`, `eval.olb`, and `source.olb`. Select **Open** to install these libraries.

- All three libraries can be installed at once by using the CTL key on the keyboard when selecting the library with the mouse. The alternative is to install each one separately by selecting **Add Library** as before and selecting the library to install.
The libraries are now installed and the parts are available for placement into schematics.

- Press Cancel when done.
START A NEW PSpICE SCHEMATIC

- The file that executes PSpice is called “capture.exe”. Create a shortcut to the “capture.exe” file to run PSpice from the Windows Desktop, if not already done.
- After starting PSpice, select from the menu, File → New → Project.
- Fill in Name ______ (name the schematic with any name).
- Select • Analog or Mixed A/D.
- Select Location _____ (select any location for your schematic files to be saved).
 - Note: The use of the floppy drive (usually A:) location is much slower in terms of saving the schematic than a hard drive location, but may be more useful.
- Select OK
In the next screen, select **Create a blank project**
Select OK.

A schematic page will appear. Parts are ready to be placed in the schematic.
PLACE PARTS IN SCHEMATIC

- With the schematic page in view, from the menu, select Place → Part.

- Select ANALOG library to pick components from the Part List such as resistors, capacitors, or inductors.

- Select OK to place the part in your schematic.
The part is now placed into the schematic.

Continue placing parts from the available three libraries: ANALOG, EVAL, and SOURCE.

- Select SOURCE library to pick power sources, such as VDC, IDC, VAC, etc. Select a power source from the Part List. Select OK to enter each part.
- Select EVAL library to pick components from the Part List such as diodes, transistors, JFETs, MOSFETs, Op Amps, and switches.

After placing a part in the schematic, use the ESC key to return the cursor to normal mode, otherwise each click of the mouse will continue placing copies of the part.
To place a ground reference in a schematic, select **Place → Ground**.

Select 0/SOURCE; select **OK**.

The part will now be attached to the cursor and with each click of the cursor a copy will be pasted into the schematic.

Use the **ESC** key when done to return the cursor to normal mode, otherwise each click of the mouse will continue placing copies of the part.
SELECT PARTS FOR MOVING, DELETING, ROTATING

- To select a part in the schematic for deleting, rotating, etc., click the part once. A red box appears around the part.
 - An alternative to selecting a part is to press and hold the left mouse button down and move the mouse down and to the right. A selection box appears. All parts inside this box will be selected when the mouse is released.

- To move a part, select the part, press and hold the left mouse button down on top of the part and drag to new position.
- To delete a part, select it, then delete using the DELETE key.
- To rotate or mirror a part select it, then from the menu **Edit → Rotate**, or **Edit → Mirror**.
WIRE PARTS TOGETHER

- From the menu, select **Place → Wire**.
 ![Orcad Capture - Lite Edition - (SCHEMAT1 : PAGE1)]
 ![Part...](Shift+F)
 ![Wire](Shift+W)
 ![Bus](Shift+B)
 ![Junction](Shift+J)

- Click and release left mouse button on first terminal to connect.
- Drag mouse to second terminal to connect. A red dot appears momentarily when a connection is made. Click the left mouse button to connect.

- Continue in this manner until all parts are wired. Move and rotate parts as necessary before wiring. Parts can be moved after wiring. **Use ESC key to terminate the wiring mode and return the cursor to the normal mode.**

Introduction to PSpice

14
CHANGE A PART'S VALUE OR NAME

- Double click the value or name to display the properties.
- Change the value or name. Select OK.

Note: For resistors in the megohm region, use the suffix Meg, such as 2.2Meg. The upper and lower case “M” are interpreted by PSpice as “milli”.
OPEN AN EXISTING SCHEMATIC

To open an existing schematic, go to File → Open → Project ... and choose the schematic (project) you want to open from the Windows menu of files and folders.
- **Note:** When opening an existing project that contains the schematic, sometimes the “Heirarchy” box will appear instead of the schematic. Click all the “+” signs until you reach “Page 1”. Double-click that. The schematic will then open.
CHANGE A PART’S MODEL PARAMETERS

- Sometimes it is necessary to change a part’s default parameters (such as for a diode or transistor).
 - Select the part in the schematic. A red dotted box appears around the part.
 - From the menu, select Edit → PSpice Model.

- A screen appears showing the part’s parameters. Change the desired parameters.
- Select File → Save in the PSpice Model screen and close that screen. The parameters are now changed for that part and each instance of its use in the current schematic; i.e., all diodes of that type in the schematic are also changed. New (project) schematics are not affected.
Power Diode

```plaintext
.MODEL D1N4002 D (IS=14.11E-9 N=1.984 RS=33.89E-3 IKF=94.
+ EG=1.110 CJ0=51.17E-12 M=.2762 VJ=.3905 FC=.5 ISR=100
+ NR=2 BV=100.1 IBV=10 TT=4.761E-6)
```

Model parameters
CREATE A ± POWER SUPPLY WITH NET ALIAS

- To save a lot of wiring in the schematic especially with power supply connections, a Net Alias can be used to identify a circuit connection. A Net Alias is simply a tag that is attached to the wire to associate the connection with a name. Other connections with the same Net Alias (tag name) are considered connected.

POWER SUPPLY CONNECTIONS

- From the menu, use Place → Net Alias...

A box appears requesting an Alias name. Use Vcc for the Positive power supply connection. For the Negative power supply connection, use Vee. Any name will actually work.
- Select OK.
CIRCUIT CONNECTIONS

- Shown below are examples of how Net Aliases can be used to “connect” wires together instead of directly connecting them. (Note: pin 4 labeled “V+” is connected to “Vcc” and pin 11 labeled “V-“ is connected to “Vee”. Always connect the “V+” of the op amp to the positive power supply and the “V-“ to the negative power supply.)

- Net Aliases are not restricted for use on power supply connections. Notice in the schematic how point A also completes a circuit.

The voltages displayed are in response to a DC Nodal Analysis, showing that the circuits are “connected” together.
COPY A PSPICE SCHEMATIC INTO A WORD DOCUMENT

- To select the schematic parts that you want to paste into the Word document, drag a box around those parts. The parts within the box are selected.

 Note: Use **Edit → Select All** from the menu if you want to include everything in the schematic page including the title box in the lower right hand corner of the schematic.

- When the parts are selected, go to the menu and select **Edit → Copy**.
- The parts selected in the schematic are now in the Windows Clipboard.
- Go to the Word document and place the cursor where you want the schematic to be placed. In the Microsoft Word menu, select **Edit → Paste** to paste the schematic into the Word document.
COPY A PSPICE WAVEFORM INTO A WORD DOCUMENT

- The method used to copy schematics does not work for waveforms generated by PSpice. If you use Edit → Copy from the waveform menu, it will copy only columns of numbers.

- Instead, use **Window → Copy to Clipboard...**; use the defaults for Background and Foreground. For best printout, use “change all colors to black” for Foreground.

- Go to the Word document and place the cursor in the document where you want to put the waveform. In Word, select **Edit → Paste** to paste the waveform in the document.
DC NODAL ANALYSIS

- Assume a schematic has a VDC source, two Resistors, and a Ground wired together.
- First create simulation settings for DC Nodal Analysis. Select from the menu, PSpice → New Simulation Profile (or Edit Simulation Profile if a profile was previously done.)
- Fill in any name for Name: ______; select Create.
- Select Analysis tab if it is not already selected; select Analysis type: (drop down menu) Bias Point; select OK.

- Select PSpice → Run to begin the DC Nodal Analysis.
- If there were no errors, close the blank simulation screen to get back to the schematic.
To show Current, Voltage, and/or Power; select from the menu, **PSpice → Bias Points → Enable (Current, Voltage, and/or Power)**.

Your schematic will then appear with markers showing the Voltage, Current, and/or Power values depending on which Display was enabled.
TRANSIENT ANALYSIS

○ Transient analysis is used when plotting the magnitude of a waveform versus time. This is what is viewed on an oscilloscope.

○ Assume we have a schematic with a VDC source (change the value to a desired voltage), a Resistor and Capacitor (change to desired values), and a Ground wired together in series.

USE ALIASES TO IDENTIFY CIRCUIT AREAS

○ In order to make the traces in analysis easier to identify, you should name the significant points with a Net Alias. A Net Alias is simply a tag that is attached to the wire to associate the connection with a name.

○ Examples of Net Alias’ are Vin, Vsource, Vout, etc.

○ Placing a Net Alias is recommended before plotting. The plot will then have names of traces corresponding to the Alias you created.

 ▪ To create a Net Alias, from the menu, use Place → Net Alias...
A box appears requesting an Alias name. Use a name such as Vout or Vsource, Vs, V1, etc.; select **OK**.

The Alias name is now attached to the cursor in your schematic. Attach it to a wire that you want to identify as your alias. The alias name will attach only to a wire (top or right side of the wire only). **Use ESC to finish placing the alias part and return cursor to normal mode.**
ESTABLISH PARAMETERS (PROFILE) FOR TRANSIENT ANALYSIS

- After placing aliases, the Transient Analysis profile must be created.
- From the menu, select **PSpice → New Simulation Profile**. If you’ve already done other simulations, you can simply use **PSpice → Edit Simulation Profile** and change the necessary parameters.
- Fill in any name for **Name**: ______; select **Create**.
 - This step is not necessary if you Edit Simulation Profile.
- Select **Analysis** tab if it is not already selected; select **Analysis type**: (drop down menu) **Time Domain (Transient)** which is usually the default; select **OK**.
- Select **Run Time _____** (enter a value for how much time is to be displayed in the time domain).
- Enter a check in the box called: **√Skip the initial transient bias point calculation** for initial conditions to be zero (**this is a very important step**).
- Select **OK**.
CREATE TRANSIENT ANALYSIS PLOT

- Establish the dependent variable to be plotted. In this example the voltage on the schematic with the alias called \textbf{Vout} is to be plotted.
- From the menu, go to \textbf{PSpice} \rightarrow \textbf{Markers} \rightarrow \textbf{Voltage Level} and attach a Voltage Level probe corresponding to the desired output.
From the menu, select PSpice → Run to begin the Transient Analysis.

If there are no errors, the plot will appear. If the plot was used before, sometimes the plot will remain minimized in the Windows taskbar. Click the minimized box called “SCHEMATIC” to maximize the plot.
CREATE A STEP VOLTAGE SOURCE

- Using a switch gives the added flexibility for creating a step voltage anywhere in the schematic. A ‘time delay before closing’ parameter is adjustable on the switch.
- Use the **Place → Part → EVAL → Sw_tClose**
 - Assuming you have a schematic with a power source (usually VDC), place the *Sw_tClose* in series with the load. This is a normally open switch which will close at time=0 (default). The ‘time delay before closing’ can be redefined by clicking the *TCLOSE* and changing the value from 0 to another value; for example, 0.1mS. In this example, the switch will close at time = 0.1 mS.

[Diagram of schematic]

- In the setup of transient analysis (see TRANSIENT ANALYSIS), the **Skip the initial transient bias point calculation** box must be checked for initial conditions to be zero.
- As before, provide a Net Alias and a Voltage Level probe.
 - **PSpice → Markers → Voltage Level** and attach the Voltage Level probe corresponding to the output desired, Vout
- From the menu, select **PSpice → Run** to begin the Transient Analysis.
- The plot will appear on the screen (or sometimes as a minimized icon called “SCHEMATIC” in the Windows taskbar at the bottom).
CREATE A REPEATING VOLTAGE SOURCE

- To create a repeating impulse, square wave, or triangular wave, use the **Place → Part → SOURCE → VPULSE** from the menu.
 - **Note:** For a current source, use **IPULSE**. The same technique applies.
There are seven parameters to set up which will determine the waveform.

- **V1** is the lower voltage level.
- **V2** is the upper voltage level.
- **TD** is the time delay before starting the waveform. Usually this is set to zero.
- **TR** is the rise time. PSpice will not allow this to be zero!
 - A reasonable value for a very fast risetime is 1 μS for a pulse or square wave.
 - For a triangular wave, this will be whatever time for the triangle ramp to ramp up.
- **TF** is the fall time. PSpice will not allow this to be zero!
 - A reasonable value for a very fast falltime is 1 μS for a pulse or square wave.
 - For a triangular wave, this will be whatever time for the triangle ramp to ramp down.
- **PW** is the width of the pulse. PSpice will not allow this to be zero!
- **PER** is the period of the waveform.

![Waveform Definitions Diagram](image-url)
CREATE AN IMPULSE

- V1 will ordinarily be zero.
- V2 is the upper voltage level and should be a large value. 10 Volts is an acceptable value.
- TD usually set to zero.
- TR and TF should be fast, on the order of 1μS or less.
- PW should be very short, 1μS or less.
- PER should be very long, typically 100mS to 1S depending on the circuit so that the impulses appear very far apart.

Example for an impulse
- V1=0; V2=10; TD=0; TR=0.1μS; TF=0.1μS; PW=0.1μS; PER=1S

CREATE A SQUARE WAVE

- V1 is the lower voltage level.
- V2 is the upper voltage level.
- TD usually set to zero.
- TR and TF should be fast, on the order of 1μS.
- PW should be whatever is desired.
- PER should be 2 x (PW+TR+TF) for a symmetrical square wave.

Example for 1kHz, 0-5v, 50% duty cycle square wave
- V1=0; V2=5; TD=0; TR=1μS; TF=1μS; PW=498μS; PER=1000μS

Example for 100kHz, 0-5v, 50% duty cycle square wave
- V1=0; V2=5; TD=0; TR=0.01μS; TF=0.01μS; PW=4.98μS; PER=10μS

CREATE A TRIANGULAR WAVE

- V1 is the lower voltage level.
- V2 is the upper voltage level.
- TD usually set to zero.
- TR and TF should be a ramp with desired ramp time.
- PW should ideally be zero for a triangular wave, but PSpice will not work correctly if it is zero. Therefore, make PW very short, on the order of 1μS or less.
- PER should be TR + PW + TF for a continuous symmetrical triangular waveform.

Example for 1kHz, 0-5v, symmetrical triangular wave
- V1=0; V2=5; TD=0; TR=500μS; TF=499μS; PW=1μS; PER=1000μS

Example for 100kHz, 0-5v, symmetrical triangular wave
- V1=0; V2=5; TD=0; TR=5μS; TF=4.99μS; PW=0.01μS; PER=10μS
DC SWEEP

- The DC Sweep capability allows you to change currents or voltages to many values in one test.
- For a voltage sweep, from the menu use the **Place → Part → SOURCE → VDC** as the voltage source.
 - (For a current sweep, use the **Place → Part → SOURCE → IDC**).
- Assume we want the i-v curve for a diode. Our schematic consists of a **VDC** and a diode, **D1**.
 - The VDC source defaults to a name V1. If you decide to change the name, it must start with a “V” for DC Sweep to work; such as Vin, Vout, etc.
 - If you had used an IDC source it would default to a name I1. If you decided to change the name, it must start with a “I” for DC Sweeps to work; such as Iin, Iout, etc.
- When the schematic is complete, you are ready to set up the DC Sweep.

![Schematic](image)

- Select **PSpice → New Simulation Profile**.
 - **Note**: Choose **PSpice → Edit Simulation Profile** if a profile was previously done to your schematic. Otherwise additional files will be created for the new simulation profile.
- Fill in any name for **Name**: ______; select **Create**.
 - **Note**: This applies only if a New Simulation Profile was created.

ESTABLISH PARAMETERS (PROFILE) FOR DC SWEEP

- Select **Analysis** tab if it is not already selected; select **Analysis type**: (drop down menu) **DC Sweep**. In **Options**, make sure only the **Primary Sweep** is checked.
- In the same screen under **Sweep Variable**, select **Voltage source**, since that is our independent variable.
 - **Note**: In the **Name** box, you must use the same name of the voltage source as on the schematic. The voltage source must start with “V”; for example, **Vin**.
 - If we used current as the independent variable instead of voltage, the current source in the schematic must start with “I”; for example, **Iin**.
- Under **Sweep Type**, select **Linear** or **Logarithmic**, depending on your needs. For semi-log, use **Linear**.
 - Next fill in the **Start value**, **End value**, and **Increment**. For our diode example where we are sweeping the voltage, we would set the **Start value** as 0V, the **End value** as 1V, and the **Increment** as 0.001V.

- Select **OK** to return to the schematic.
CREATE DC SWEEP PLOT

- Establish the dependent variable (y-axis), which in this case is the diode current.
- From the menu, go to **PSpice → Markers → Current Into Pin** and attach the Current probe corresponding to the output desired, the diode current. The **Current Into Pin** probe cannot be placed on a wire. It must be placed on the pin of a part.
After the probe is placed, go to **PSpice → Run** to view results of the simulation.

- The plot will appear on the screen.
 - **Note:** If the plot had been used before, it sometimes remains as a minimized icon called “SCHEMATIC” in the Windows taskbar at the bottom. Click the icon to enlarge.
CHANGE AXIS FROM LINEAR TO LOG PLOT

- To make the plot a semi-log plot, change the y-axis, which is the current through the diode in our example, to a logarithmic scale.
 - In the plot menu, select Plot → Axis Settings... → Y Axis.
 - Under Scale, select Log.
 - In Axis Title box, put in a name for the Y-axis which will show up in the plot.
 - Select OK.
 - You now have a semi-log plot with the X-axis linear and the Y-axis logarithmic.
 - **Note**: In this menu that you can also modify the X Axis, X Grid, and Y Grid.

![Axis Settings](image)
DC SWEEP – FAMILY OF CURVES

- This procedure would typically be used for the characteristic family of curves for a bipolar junction transistor, in which the voltage is the “sweep” variable. The sweep variable for a transistor is the collector-emitter voltage, shown on the x-axis typically from 0 to 15 volts.
- The sweep variable could also be current or temperature when used in other family of curves applications.
- Assume we want the family of curves for a bipolar transistor in which we want to know the collector current for different values of base current throughout a range of collector-emitter (C-E) voltage.
 - The sweep voltage, therefore, is the C-E voltage, which will be the x-axis. Typically it will sweep from 0 volts to 15 volts.
 - Place a transistor in the schematic, **Place → Part → EVAL → Q2N2222**.
 - Place a DC Current Source, **Place → Part → SOURCE → IDC**, to the base of the transistor. The value of the DC current is irrelevant and ignored in this procedure. Therefore, the default value of 0Adc will work fine. If the name is changed, it must start with an “I”.

- Place a DC Voltage Source, **Place → Part → SOURCE → VDC**, between the collector and emitter of the transistor. The value of the DC voltage attached to the part is irrelevant and ignored in this procedure. Therefore, the default value of 0Vdc will work.
- If the name is changed from the default V1, it must also start with a “V”.

I1 is the Secondary Sweep which corresponds to the number of traces on the plot.

V1 is the Primary Sweep which corresponds to the x-axis of the plot.

Introduction to PSpice
PRIMARY SWEEP

- In the Simulation Settings, ensure that **Options: Primary Sweep** has a checkmark.
- Choose **Voltage source** since that is to be the x-axis.
- **Name** is filled in for the voltage source that corresponds to the name on the schematic.
 - In our example, \(V_1 \) is the voltage source in the schematic and is filled in the **Name** box.
- **Sweep type** is chosen as either **Linear** or **Logarithmic**.
- **Start value**, **End value**, and **Increment** are filled out. For our example, use the voltage start value as 0 volts, the end value as 15 volts, and the increment as 0.05 volts. The range in this case should be somewhere between 0.0015 to 0.015.
 - **Note**: A small increment value makes a smoother plot but takes longer for the program to draw. As a rule-of-thumb, the range should be:

\[
\text{Increment Value Minimum} = \frac{\text{End Value}}{1000}
\]
\[
\text{Increment Value Maximum} = \frac{\text{End Value}}{100}
\]
SECONDARY SWEEP

- Next we need to establish the different values of base current that we would like to use in the plot. We do this by using a secondary variable, I1.
- In the same Simulation Settings screen, in the Options box, put a check mark by Secondary Sweep.
- Use Current source as the Sweep variable with the Name that corresponds to the current source in the schematic, I1.
- Make the Sweep type → Linear.
- Fill in Start value, End value, and Increment as desired.
 - These values will determine the number of traces displayed on the plot. In this example, a plot with traces 10μA, 20μA, 30μA, 40μA, 50μA, 60μA, 70μA, 80μA, 90μA, and 100μA will be on the plot.
 - As an alternative to using the Start, End, and Increment values, you can use the Value list, with the values separated by a comma or a space.
- Select OK.
PLOT FAMILY OF CURVES

- Now set up the dependent variable in the schematic that we want to plot (y-axis), which in this case is the collector current.
- Go to PSpice → Markers → Current Into Pin and attach the Current probe corresponding to the output desired, the collector current of Q1.

Current Into Pin Probe which corresponds to the y-axis on the plot
Go to PSpice → Run to view DC Sweep Family of Curves.
AC SWEEP

- AC Sweep is used for observing magnitude and phase of voltages and currents.
 - Use only the VAC or IAC for power sources.
- Create a schematic with VAC as the power source. (See example below). Use a Net Alias to help identify relevant circuit areas when plotting is complete.
- Select PSpice → New Simulation Profile (or choose PSpice → Edit Simulation Profile if a profile was previously done to your schematic).
 - If using New Simulation Profile, fill in any name for Name: ______.
 - Select Create.
- Select Analysis tab if it is not already selected; select Analysis type: (drop down menu), AC Sweep/Noise; AC Sweep Type as Linear or Logarithmic; Start Frequency, End Frequency, and Points/Decade. (Note: When used, always specify MegHz, not MHz).
- Click OK.
 - A reasonable value for Points/Decade is 100 to 1000. The more Points the longer it takes to simulate and the smoother the curves.
- Go to PSpice → Markers → Voltage Level and attach the Voltage Level probe to the output desired.

- Go to PSpice → Run to view results of the simulation.
AC SWEEP – BODE PLOTS

- Bode plots consist of two plots: magnitude of output to input (dB) versus frequency (Hz), and phase (deg) versus frequency (Hz).
 - The schematic utilizes the VAC source and the Simulation Settings are set to AC Sweep Type and Logarithmic in decades. Assume that the phase of the VAC source is 0 degrees.
 - The phase vs frequency will be plotted automatically in a separate plot.
- The VAC source magnitude in the schematic must be equal to 1.
- Assume that you have drawn your schematic.
- Set up the Simulation Profile with AC Sweep, Logarithmic → Decade, Start Frequency, End Frequency, Points/Decade.
 - Note: 100 to 1000 points per decade is a reasonable value.
- Select OK.
- Go to PSpice → Markers → Plot Window Templates ...
- Select Bode Plot dB – separate; select Place.
- A small probe appears at the end of your cursor. Attach this probe to the output desired on your schematic. Next go to PSpice → Run to create the Bode plot.

Vac source voltage must be 1Vac

Bode Plot dB Probe
The Bode Plot appears as two plots:

- Magnitude (dB) vs frequency (Hz).
- Phase (deg) vs frequency (Hz).
PARAMETRIC PLOT

- The Parametric Plot allows you to use different values of a part on the same plot. For example, suppose you wanted to do a Transient Analysis of an RC circuit with three different values of capacitance, 1\mu F, 10\mu F, and 100\mu F. Do the following:

 - Name the part value with a variable name (any name will do, but we shall use “cval” as the variable name) enclosed in curly brackets. That is, instead of using 1\mu F for the value, use \{cval\}.
 - **Note:** Be sure to use a probe so that the plots will automatically be generated when simulating. In this example, a voltage probe has been placed at Vout. As a result, three plots will be generated showing the voltage vs. time for three values of capacitance.

Instead of a value such as 1uF, we are giving it a variable name, in this case cval, and enclosing it in curly brackets.
- Declare the variable by going to **PSpice → Place Optimizer Parameters** and place the Optimizer part in the schematic. (Declaring the variable means that we are setting it up for PSpice to recognize it with more than one value.)

- Open the Optimizer Parameter part just placed by double-clicking it.
- Fill in the Name with the variable name used, in this case, *cval*. Do not use the curly brackets when filling in Name. Ignore the remaining boxes.
- Click Add to place the variable name in the window. Click OK. The variable “cval” is now declared.
After creating a Simulation Profile as Time Domain (Transient), select the Parametric Sweep to bring up the parametric sweep options.

- Check the Parametric Sweep box
- Select the Global parameter
- Fill in the Parameter name, cval
- Select the Value list and fill in 1uF, 10uF, 100uF. The values must be in the order of smallest value (1uF in this case) to the highest value (100uF). There must be no spaces after the commas.
- Select OK when done.
Simulate the schematic as usual.

Before simulation is complete, a screen will appear. Click OK.

Three plots corresponding to three values of capacitance will be produced.
PLACE TEXT, LINES, ARROWS, ETC. IN THE PLOTS

- Clicking in the upper or lower plot, go to Plot → Label → Text ... (Line, Poly-line, Arrow, Box, Circle, Ellipse).
 - Note: The SEL>> to the left of the plot informs you which plot is active for inserting text (or other items).
- Select the item to place in the plot.
- Click in the plot to place the item.
- Move text (or other item) by clicking mouse cursor on it and dragging to new position.

Arrow placed into plot
Text placed into plot

Introduction to PSpice
USING CURSORS IN THE PLOT

- For locating or identifying critical coordinates in the plot, use cursors. From the menu, go to Trace → Cursor → Display.
 - You can then optionally select Peak, Trough, Slope, Min, Max, or Point, to automatically place the cursors in the plot.

- Use the left mouse button to place cursor A1 on the trace. Use the right mouse button to place cursor A2 on the trace. The Probe Cursor box will show Cursor A1 coordinates, Cursor A2 coordinates, and the difference between A1 and A2.
- After placing a cursor, use the left mouse button to move Cursor A1 and right mouse button to move Cursor A2 on the trace.
MARK CURSOR COORDINATES INTO THE PLOT

- After the cursor is positioned on the plot where you want it, you can “mark” it (place the coordinates) on the plot automatically by going to Plot → Label → Mark.

Cursors will appear on the lower plot because SEL>> points to the lower plot.

Click the mouse cursor in the upper plot to make the upper plot active.

Coordinates are automatically placed in the plot after using Trace → Cursor → Display,
Trace → Cursor → Peak,
then Plot → Label → Mark.