1. Precise and complete answers are a must for full credit. Show all your work. Calculators are NOT allowed.

1. State/Define the following precisely. (5 × 2 = 10)
 (i) Denumerable set: A set S is denumerable if there exists a bijection \(f: \mathbb{N} \rightarrow S \).
 (ii) Surjective (onto) function: A function \(f: A \rightarrow B \) is an onto function if for every \(y \in B \) there exists a \(x \in A \) such that \(f(x) = y \).
 (iii) Completeness axiom: Every nonempty subset \(S \) of an ordered field \(F \) that has an upper bound has the least upper bound, which is an element of \(F \).
 (iv) Archimedean property of \(\mathbb{R} \): Let \(x \) be any real number. Then there exists a positive integer \(n^* \) greater than \(x \).
 (v) Divergent sequence: A sequence \(a_n \) is said to diverge if for all real numbers \(A \), there exists a \(\varepsilon > 0 \) such that for every \(n^* \) there exists a \(m > n^* \) with \(|a_m - A| \geq \varepsilon \).

2. Suppose \(S \) is a nonempty subset of \(\mathbb{R} \) and \(k \) is an upper bound of \(S \). Then show that \(k \) is the least upper bound of \(S \) if and only if for each \(\varepsilon > 0 \) there exists a \(s \in S \) such that \(k - \varepsilon < s \). (5 points)
 Solution: Suppose that \(k \) is the least upper bound of \(S \). Let \(\varepsilon > 0 \) be given. If there exists no \(s \in S \) such that \(k - \varepsilon < s \) then \(k \) is not the least upper bound. This is a contradiction. Conversely, if for each \(\varepsilon > 0 \) there exists a \(s \in S \) such that \(k - \varepsilon < s \). So, no \(k' < k \) can be an upper bound of \(S \). Hence \(k \) is the least upper bound.

3. Prove that between any two real numbers there exists an irrational number. (3 points)
 Solution: Let \(a, b \) be any two real numbers. Consider \(a' = \frac{a}{\sqrt{2}} \) and \(b' = \frac{b}{\sqrt{2}} \). We know there exists a rational number \(r' \) such that \(a' < r < b' \). This implies \(a < \sqrt{2}r' < b \).

4. Prove that the sequence \(\{a_n\} \) converges to \(A \) if and only if \(\lim_{n \to \infty}(a_n - A) = 0 \). (5 points)
 Solution: \(\{a_n\} \) converges to \(A \) that is, if and only if for every \(\varepsilon > 0 \) there exists a \(N \) such that \(|a_n - A| < \varepsilon \) for all \(n \geq N \). That is same as, for every \(\varepsilon > 0 \) there exists a \(N \) such that \(|(a_n - A) - 0| < \varepsilon \) for all \(n \geq N \).
 This is equivalent to \(\{a_n - A\} \) converges to 0.
5. Show that the sequence \sqrt{n} diverges.
Solution: Conclusion is immediate once you observe that \sqrt{n} is unbounded above.