1. Precise and complete answers are a must for full credit. Show all your work. Calculators are **NOT** allowed.

1. State/ Define the following precisely. ($5 \times 2 = 10$)
 (i) Denumerable set
 (ii) surjective (onto) function
 (iii) Completeness axiom
 (iv) Archimedean property of \mathbb{R}
 (v) divergent sequence

2. Suppose S is a nonempty subset of \mathbb{R} and k is an upper bound of S. Then show that k is the least upper bound of S if and only if for each $\varepsilon > 0$ there exists a $s \in S$ such that $k - \varepsilon < s$. (5 points)

3. Prove that between any two real numbers there exists an irrational number. (3 points)

4. Prove that the sequence $\{a_n\}$ converges to A if and only if $\lim_{n \to \infty} (a_n - A) = 0$. (5 points)

5. Show that the sequence \sqrt{n} diverges.