I. This problem is essentially dealing with notion of compactness and its applications.

1. Find an infinite collection \(\{S_n : n \in \mathbb{N}\} \) of compact sets in \(\mathbb{R} \) such that \(\bigcup_{n=1}^{\infty} S_n \) is NOT compact. \([10]\)

2. This problem is a modification of the Heine-Borel Theorem.

 Suppose that \(S \subset \mathbb{R} \) is a closed and bounded set. Let \(\mathcal{F} \) be an open cover of \(S \). For each \(x \in \mathbb{R} \), let

 \[S_x = S \cap [x, \infty) \]

 and let

 \[B = \{ x : S_x \text{ is covered by a finite subcover of } \mathcal{F}\} . \]

 Following the reasoning as in the Heine-Borel Theorem, Prove that \(B \) is not bounded. \([30]\)

3. Let \(S \) be a compact subset of \(\mathbb{R} \) and \(T \) be a closed subset of \(S \). Using the definition of compactness, show that \(T \) is compact. \([25]\)

4. Let \(f : D \to \mathbb{R} \) be such that \(f \) is bounded on a neighbourhood of each \(x \in D \).

 If \(D \) is compact, prove that \(f \) is bounded on \(D \). \([20]\)
5. If \(f \) is continuous function that is bounded on a neighborhood of each \(x \) in \(D \) where \(D \) is not compact, Show that \(f \) is not necessarily bounded. [15]

II. This question deals with continuous functions and their properties.

1. Let \(f : D \rightarrow \mathbb{R} \) be a continuous function. State whether the following statements are true and justify.
 (i) If \((x_n)\) is a Cauchy sequence in \(D \), the \(f(x_n) \) is also a Cauchy sequence. [5]
 (ii) If \(D \) is a bounded subset of \(\mathbb{R} \), the \(f(D) \) is also bounded. [5]

 If the function \(f \) is uniformly continuous on \(D \), do your conclusions remain same? Justify. [10]

2. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function such that \(f(a) < 0 < f(b) \). Let \(S = \{ x \in [a, b] : f(x) \geq 0 \} \).
 (a) Why is \(S \) non-empty? [5]
 (b) Why does \(\inf S \) exist? [5]
 (c) Let \(c \in (a, b) \). If \(f(c) > 0 \) show that there exists a \(\alpha > 0 \) and a neighbourhood \(U \) of \(c \) such that \(f(x) > \alpha \) for all \(x \in U \cap D \). [15]
 (d) If \(c = \inf S \), can \(f(c) > 0 \)? Why? [15]
 (e) Show that for the same \(c \) as above, \(f(c) < 0 \) is not possible. [15]

3. Let \(f \) be a continuous function defined on \([a, b] \). Suppose that for every integrable function \(g \) defined on \([a, b]\), \(\int_a^b f(x)g(x)dx = 0 \). Prove that \(f(x) = 0 \) for all \(x \in [a, b] \). [20]

4. Let \(f \) and \(g \) be continuous on \([a, b]\) and suppose that \(\int_a^b f(x)dx = \int_a^b g(x)dx \).
 Prove that there exists \(c \in [a, b] \) such that \(f(c) = g(c) \). [20]

III. This problem deals with differentiable functions and their properties.

1. Let \(f \) be differentiable on \((0,1)\) and continuous on \([0,1]\). Suppose that \(f(0) = 0 \) and that \(f' \) is increasing on \((0,1)\). Let \(g(x) = \frac{f(x)}{x} \) for \(x \in (0,1) \).
 Prove that \(g \) is increasing on \((0,1)\). [15]

2. Let \(f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \) Show that \(f \) is differentiable at \(x = 0 \). Is \(f' \) continuous at \(x = 0 \)? [15]

IV. Write a brief note on what you understand by (i) the pointwise convergence (ii) uniform convergence, of a sequence of functions \(f_n(x) \) to a function \(f(x) \). [15]