Read the section 1.4, 1.5, 1.6. Make sure you know how to answer the following questions.

1. Negate the statement: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that whenever x and t are in D and satisfy $|x - t| < \delta$, then $|f(x) - f(t)| < \varepsilon$.

2. Suppose that $f : A \to B$. If there exists a function $g : B \to A$ such that $(g \circ f)(x) = x$ for all $x \in A$ then show that f is injective.

3. Do even functions have inverses? Do odd functions have inverses?

4. Show that the following pairs of sets S and T are equinumerous by finding a specific bijection between S and T.

 (i) $S = [0, 1], T = [0, 1)$.
 (ii) $S = (0, 1), T = (0, \infty)$

5. If S is denumerable show that S is equinumerous with a proper subset of itself.

6. Prove that if a set A has a supremum, then $\text{sup } A$ is unique.

7. If possible, give an example of a nonempty bounded subset of \mathbb{Q} that

 (a) has a least upper bound and a maximum in \mathbb{Q}.
 (b) has a least upper bound but no maximum in \mathbb{Q}.
 (c) does not have a least upper bound in \mathbb{Q}.

8. Let $x, y \in \mathbb{R}$ such that $x \leq y + \varepsilon$ for every $\varepsilon > 0$. Then show that $x \leq y$.