1. Precise and complete answers are a must for full credit. Show all your work. Calculators are NOT allowed.

1. State/Define the following precisely. \(5 \times 2 = 10\)
 (i) Denumerable set
 (ii) Surjective (onto) function
 (iii) Completeness axiom
 (iv) Archimedean property of \(\mathbb{R} \)
 (v) Divergent sequence

2. Suppose \(S \) is a nonempty subset of \(\mathbb{R} \) and \(k \) is an upper bound of \(S \). Then show that \(k \) is the least upper bound of \(S \) if and only if for each \(\varepsilon > 0 \) there exists a \(s \in S \) such that \(k - \varepsilon < s \). \((5 \text{ points})\)

3. Prove that between any two real numbers there exists an irrational number. \((3 \text{ points})\)

4. Prove that the sequence \(\{a_n\} \) converges to \(A \) if and only if \(\lim_{n \to \infty} (a_n - A) = 0 \). \((5 \text{ points})\)

5. Show that the sequence \(\sqrt{n} \) diverges.