A new generation of Autonomous Underwater Gliders is currently being developed for the fields of marine biology, physical oceanography, and marine environmental studies, assessment and management at the Florida Institute of Technology, Melbourne Florida, USA. The end-product of the project will be an autonomous powered glider that collects video, acoustic, and biological data continuously without the need for human intervention. Scientists who perform experiments in shallow water can also use the vehicle in power mode and/or for short duration gliding dives.

The more information the scientist is able to accumulate the better he or she will be able to determine the health of the ocean ecosystem and document the changing chemical, physical, and biological parameters of the environment. Using an AUV-Glider, pollution of ocean waters can be detected and quantified in an automated way; the AUV-Glider can take and analyze water samples to determine water quality as well as the specific ecosystem parameters. Using an AUV-Glider, pollution of ocean waters can be detected and quantified in an automated way; the AUV-Glider can take and analyze water samples to determine water quality as well as the specific ecosystem parameters.

Navigation, Data Collection, and Communication
The AUV-Glider is designed specifically for the needs of the Blue Water scientist that requires greater control over the vehicle, more space for scientific instruments and the ability to obtain water or biological samples. Scientists who perform experiments in shallow water can also use the vehicle in power mode and/or for short duration gliding dives. The more information the scientist is able to accumulate the better he or she will be able to determine the health of the ocean ecosystem and document the changing chemical, physical, and biological parameters of the environment. Using an AUV-Glider, pollution of ocean waters can be detected and quantified in an automated way; the AUV-Glider can take and analyze water samples to determine water quality as well as the specific ecosystem parameters.

Running Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Donation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed (Yr/m)</td>
<td>50%</td>
<td>20 m/s</td>
</tr>
<tr>
<td>Endurance (ground)</td>
<td>50%</td>
<td>15 hours</td>
</tr>
<tr>
<td>Endurance (float)</td>
<td>50%</td>
<td>15 hours</td>
</tr>
</tbody>
</table>

Special Thanks To:

- John & Barbara Rample, $1,000
- Syntech Technologies, $13,100
- Syntech Foam
- General Plastics, $1,185
- Vextsroeka Marine, $2,500
- F.I.T. College of Engineering, $1,000
- F.I.T. DMES
- F.I.T. Underwater Tech. Lab. Parts
- Musco of West Melbourne, $400

ABSTRACT

A new generation of Autonomous Underwater Gliders is currently being developed for the fields of marine biology, physical oceanography, and marine environmental studies, assessment and management at the Florida Institute of Technology, Melbourne Florida, USA. The end-product of the project will be an autonomous powered glider that collects video, acoustic, and biological data continuously without the need for human intervention. Scientists who perform experiments in shallow water can also use the vehicle in power mode and/or for short duration gliding dives.

The more information the scientist is able to accumulate the better he or she will be able to determine the health of the ocean ecosystem and document the changing chemical, physical, and biological parameters of the environment. Using an AUV-Glider, pollution of ocean waters can be detected and quantified in an automated way; the AUV-Glider can take and analyze water samples to determine water quality as well as the specific ecosystem parameters. Using an AUV-Glider, pollution of ocean waters can be detected and quantified in an automated way; the AUV-Glider can take and analyze water samples to determine water quality as well as the specific ecosystem parameters.