Properties of Regular Languages

Reading: Chapter 4
Pumping Lemma for Regular Languages

- **Lemma:** (the pumping lemma)
 Let M be a DFA with $|Q| = n$ states, and let x be a string in $L(M)$, where $|x| \geq n$. Then $x = uvw$, where u, v, w are all in Σ^* and:

 - $1 \leq |uv| \leq n$
 - $|v| \geq 1$
 - uv^iw is in $L(M)$, for all $i \geq 0$

- Note this statement of the pumping lemma is slightly different than the books'.
Pumping Lemma for Regular Languages

- **Proof:**
 Let M be a DFA where $|Q| = n$, and let x be a string in $L(M)$ where $|x| \geq n$. Furthermore, let $x = a_1 a_2 \ldots a_m$ where $\delta(q_0, a_1 a_2 \ldots a_p) = q_{jp}$

 \[
 \begin{array}{cccccc}
 a_1 & a_2 & a_3 & \ldots & a_m \\
 q_{j0} & q_{j1} & q_{j2} & q_{j3} & \ldots & q_{jm}
 \end{array}
 \]

 $m \geq n$ and q_{j0} is q_0

 Consider the first n symbols, and first $n+1$ states on the above path:

 \[
 \begin{array}{cccc}
 a_1 & a_2 & a_3 & \ldots & a_n \\
 q_{j0} & q_{j1} & q_{j2} & q_{j3} & \ldots & q_{jn}
 \end{array}
 \]

 Since $|Q| = n$, it follows from the pigeon-hole principle that $j_s = j_t$ for some $0 \leq s \leq t \leq n$, i.e., some state appears on this path twice (perhaps many states appear more than once, but at least one does).
\[q_0 \xrightarrow{a_1} q_{j_1} \xrightarrow{a_2} \ldots \xrightarrow{a_s} q_{j_s} \xrightarrow{a_{s+1}} \ldots \xrightarrow{a_t} q_{j_t} \xrightarrow{a_{t+1}} \ldots \xrightarrow{a_n} q_{j_n} \]

\[a_{s+1} \ldots a_t \]

\[a_1 \ldots a_s \xrightarrow{\text{loop}} q_{j_s} = q_{j_t} \xrightarrow{a_{t+1} \ldots a_n} q_{j_n} \]
• Let:

 – \(u = a_1 \ldots a_s \)

 – \(v = a_{s+1} \ldots a_t \)

• Since \(0 \leq s < t \leq n \) and \(uv = a_1 \ldots a_t \) it follows that:

 – \(1 \leq |v| \) and therefore \(1 \leq |uv| \)

 – \(|uv| \leq n \) and therefore \(1 \leq |uv| \leq n \)

• In addition, let:

 – \(w = a_{t+1} \ldots a_m \)

• It follows that \(uv^i w = a_1 \ldots a_s (a_{s+1} \ldots a_t)^i a_{t+1} \ldots a_m \) is in \(L(M) \), for all \(i \geq 0 \).

\textit{In other words, when processing the accepted string} \(x \), \textit{the loop was traversed once, but could have been traversed as many times as desired, and the resulting string would still be accepted.}
Example:

\[\begin{array}{cccccccc}
q_0 & 0,1 & q_1 & 0,1 & q_2 & 0 & q_3 & 0 & q_4 \\
\end{array} \]

\[n = 5 \]

\[x = 0001000 \] is in \(L(M) \)

\[u = 0 \]
\[v = 001 \]
\[w = 000 \]

\[u v^i w \] is in \(L(M) \), i.e., \(0(001)^i000 \) is in \(L(M) \), for all \(i \geq 0 \)
Note this does not mean that every string accepted by the DFA has this form:

- 001 is in $L(M)$ but is not of the form $0(001)^i000$

Similarly, this doesn’t even mean that every long string accepted by the DFA has this form:

- 0011111 is in $L(M)$, is very long, but is not of the form $0(001)^i000$

Note, however, in this latter case 0011111 could be similarly decomposed.
• **Note:** It may be the case that no x in $L(M)$ has $|x| \geq n$.
• Example:

\[x = bbbab \text{ is in } L(M) \]
\[|x| = 5 \]
\[u = \varepsilon \]
\[v = b \text{ or } v = b \]
\[w = bbab \]
\[(b)^i bbbab \text{ is in } L(M), \text{ for all } i \geq 0 \]

\[b \ b \ b \ a \ b \]
\[q_0 \ q_0 \ q_0 \ q_0 \ q_1 \ q_3 \]

\[b(b)^i bab \text{ is in } L(M), \text{ for all } i \geq 0 \]
NonRegularity Example

• **Theorem:** The language:
 \[L = \{0^k1^k \mid k \geq 0\} \]
 (1)

 is not regular.

• **Proof:** (by contradiction) Suppose that \(L \) is regular. Then there exists a DFA \(M \) such that:
 \[L = L(M) \]
 (2)

 We will show that \(M \) accepts some strings not in \(L \), contradicting (2).

 Suppose that \(M \) has \(n \) states, and consider a string \(x = 0^m1^m \), where \(m \gg n \).

 By (1), \(x \) is in \(L \).

 By (2), \(x \) is also in \(L(M) \).
Since $|x| = 2^m >> n$, it follows from the pumping lemma that:

- $x = uvw$
- $1 <= |uv| <= n$
- $1 <= |v|$, and
- uv^iw is in $L(M)$, for all $i >= 0$

Since $1 <= |uv| <= n$ and $n << m$, it follows that $1 <= |uv| <= m$.

Also, since $x = 0^m1^m$ it follows that uv is a substring of 0^m.

In other words $v = 0^j$, for some $j >= 1$.

Since uv^iw is in $L(M)$, for all $i >= 0$, it follows that $0^{m+ cj}1^m$ is in $L(M)$, for all $c >= 1$.

But by (2), $0^{m+ cj}1^m$ is in L, for any $c >= 1$, a contradiction.

- Note that L basically corresponds to balanced parenthesis.
NonRegularity Example

• **Theorem:** The language:
 \[L = \{0^k1^k2^k \mid k \geq 0\} \] (1)

is not regular.

• **Proof:** (by contradiction) Suppose that \(L \) is regular. Then there exists a DFA \(M \) such that:
 \[L = L(M) \] (2)

 We will show that \(M \) accepts some strings not in \(L \), contradicting (2).

 Suppose that \(M \) has \(n \) states, and consider a string \(x = 0^m1^m2^m \), where \(m \gg n \).

 By (1), \(x \) is in \(L \).

 By (2), \(x \) is also in \(L(M) \).
Since $|x| = 3*m >> n$, it follows from the pumping lemma that:

- $x = uvw$
- $1 \leq |uv| \leq n$
- $1 \leq |v|$, and
- uv^iw is in $L(M)$, for all $i \geq 0$

Since $1 \leq |uv| \leq n$ and $n << m$, it follows that $1 \leq |uv| \leq m$.

Also, since $x = 0^m 1^m 2^m$ it follows that uv is a substring of 0^m.

In other words $v=0^j$, for some $j \geq 1$.

Since uv^iw is in $L(M)$, for all $i \geq 0$, it follows that $0^{m+cj} 1^m 2^m$ is in $L(M)$, for all $c \geq 1$.

But by (2), $0^{m+cj} 1^m 2^m$ is in L, for any $c \geq 1$, a contradiction.\textbf{•}
NonRegularity Example

• **Theorem:** The language:
 \[L = \{0^m1^n2^{m+n} \mid m,n \geq 0\} \]
 is not regular.

• **Proof:** (by contradiction) Suppose that L is regular. Then there exists a DFA M such that:
 \[L = L(M) \]
 We will show that M accepts some strings not in L, contradicting (2).

Suppose that M has n states, and consider a string \(x=0^m1^n2^{m+n} \), where \(m \gg n \).

By (1), \(x \) is in L.

By (2), \(x \) is also in \(L(M) \).
Since $|x| = m >> n$, it follows from the pumping lemma that:

- $x = uvw$
- $1 <= |uv| <= n$
- $1 <= |v|$, and
- $uv^i w$ is in $L(M)$, for all $i >= 0$

Since $1 <= |uv| <= n$ and $n << m$, it follows that $1 <= |uv| <= m$.

Also, since $x = 0^m 1^n 2^{m+n}$ it follows that uv is a substring of 0^m.

In other words $v = 0^j$, for some $j >= 1$.

Since $uv^i w$ is in $L(M)$, for all $i >= 0$, it follows that $0^{m+cj} 1^m 2^{m+n}$ is in $L(M)$, for all $c >= 1$. In other words v can be “pumped” as many times as we like, and we still get a string in $L(M)$.

But by (2), $0^{m+cj} 1^n 2^{m+n}$ is in L, for any $c >= 1$, a contradiction.

• Note that the above proof is almost identical to the previous proof.
• By the way...

\[\{0^n1^n \mid 0 \leq n \} \text{ Is not regular} \]

\[\{0^n1^n \mid 0 \leq n \leq k, \text{ for some fixed } k \} \text{ Is regular, for any fixed } k. \]

• For k=3:

\[L = \{ \varepsilon, 01, 0011, 000111 \} \]
• **Theorem:** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then $L(M)$ is non-empty iff there exists an x in $L(M)$ such that $|x| < |Q|$.

• **Proof:**

(if) Suppose there exists a string x in $L(M)$ such that $|x| < |Q|$. Then clearly $L(M)$ is non-empty.

(only if) By contradiction.

Suppose that $L(M)$ is non-empty, but that there exists no string x in $L(M)$ such that $|x| < |Q|$.

It follows that $|y| \geq n$, where $n = |Q|$, for all y in $L(M)$.

Let z be a string of shortest length in $L(M)$. Then $|z| \geq n$.

By the pumping lemma $z = uvw$, $|v| \geq 1$ and $uv^i w$ is in $L(M)$ for all $i \geq 0$.

But then $uv^0 w = uw$ is in $L(M)$ and:

\[
|uw| = |z| - |v| \\
\leq |z| - 1 \quad \text{because } |v| \geq 1 \\
< |z|
\]

Since uw is in $L(M)$, it follows that z is not a string of shortest length in $L(M)$, a contradiction.
• **Corollary:** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then there is an algorithm to determine if $L(M)$ is empty.

• **Proof:**
 From the theorem it follows that if $L(M)$ is non-empty then there exists a string x where $|x| < n$ and $n = |Q|$ such that M accepts x. We can try running M on each string of length $< n$ to see if any are accepted. If one is accepted then $L(M)$ is non-empty, otherwise $L(M)$ is empty. Since the number of states $|Q|$ and the number of input symbols $|\Sigma|$ are both fixed, it follows that there are at most a finite number of strings (of length less than $|Q|$) that need to be tested.

• Note that a simple graph search algorithm works here too…in fact, the above algorithm is a graph search…
• **Theorem:** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then $L(M)$ is finite iff $|x| < |Q|$ for all x in $L(M)$.

• **Proof:**

(if) Suppose that $|x| < |Q|$ for all x in $L(M)$. Since the number of states $|Q|$ and the number of input symbols $|\Sigma|$ are both fixed, it follows that there are at most a finite number of strings of length less than $|Q|$. It follows that $L(M)$ is finite (exercise: give an upper bound on the number of such strings).

(only if) By contradiction. Suppose that $L(M)$ is finite, but that $|x| \geq |Q|$ for some x in $L(M)$. From the pumping lemma it follows that $x=uvw$, $|v|\geq 1$ and uv^iw is in $L(M)$ for all $i\geq 0$. But then $L(M)$ would be infinite, a contradiction.
• **Theorem:** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then $L(M)$ is infinite iff there exists an x in $L(M)$ such that $|x| \geq |Q|$.

• **Proof:**

 (if) Suppose there exists an x in $L(M)$ such that $|x| \geq |Q|$. From the pumping lemma it follows that $x=uvw$, $|v|\geq 1$ and uv^iw is in $L(M)$ for all $i\geq 0$. Therefore $L(M)$ is infinite.

 (only if) By contradiction. Suppose that $L(M)$ is infinite, but that there is no x in $L(M)$ such that $|x| \geq |Q|$. It follows that each x in $L(M)$ has length less than $|Q|$. Since the number of states $|Q|$ and the number of input symbols $|\Sigma|$ are both fixed, it follows that there are at most a finite number of strings of length less than $|Q|$. It follows that $L(M)$ is finite. A contradiction.

• Note that the above also follows directly from the previous theorem.
• **Theorem:** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let $n = |Q|$. Then $L(M)$ is infinite iff there exists an x in $L(M)$ such that $n \leq |x| < 2n$.

• **Proof:** (left as an exercise; similar to the previous theorem).

• **Corollary:** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then there is an algorithm to determine if $L(M)$ is infinite.

• **Proof:** (left as an exercise).
Closure Properties of Regular Languages

• Consider various operations on languages:

$\overline{L} = \{x | x \text{ is in } \Sigma^* \text{ and } x \text{ is not in } L\}$
$L_1 \cup L_2 = \{x | x \text{ is in } L_1 \text{ or } L_2\}$
$L_1 \cap L_2 = \{x | x \text{ is in } L_1 \text{ and } L_2\}$
$L_1 - L_2 = \{x | x \text{ is in } L_1 \text{ but not in } L_2\}$
$L_1L_2 = \{xy | x \text{ is in } L_1 \text{ and } y \text{ is in } L_2\}$
$L^* = \bigcup_{i=0}^{\infty} L^i = L^0 \cup L^1 \cup L^2 \cup \ldots$
$L^+ = \bigcup_{i=1}^{\infty} L^i = L^1 \cup L^2 \cup \ldots$

• A \textit{closure} property for the regular languages states that if a set of one or more languages is regular, then some operation on that set results in a regular language.
• **Theorem:** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then $M' = (Q, \Sigma, \delta, q_0, Q - F)$ is a DFA where $L(M') = \Sigma^* - L(M)$.

• **Proof:** (left as an exercise).

• **Corollary:** The regular languages are closed under complementation, i.e., if L is a regular language then so is \overline{L}.

• Does the above construction work for NFAs?
• **Theorem:** The regular languages are closed with respect to union, concatenation and Kleene closure.

• **Proof:** Let L_1 and L_2 be regular languages. By definition there exist regular expressions r_1 and r_2 such that $L(r_1) = L_1$ and $L(r_2) = L_2$. But then $r_1 + r_2$ is a regular expression representing $L_1 \cup L_2$. Similarly for concatenation and Kleene closure.
• **Lemma:** Let L_1 and L_2 be subsets of Σ^*. Then $L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2}$.

• **Theorem:** Let L_1 and L_2 be regular languages. Then $L_3 = L_1 \cap L_2$ is a regular language.

• **Proof:** (algebraic proof) Let L_1 and L_2 be regular languages. Then:

 $\overline{L_1}$ is regular

 $\overline{L_2}$ is regular

 $\overline{L_1 \cup L_2}$ is regular

 $\overline{L_1 \cup L_2}$ is regular

 But by the lemma:

 $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2} = L_1 \cap L_2 \cdot$
• A direct construction of a DFA M such that $L(M) = L_1 \cap L_2$:

• Let:

 $M_1 = (Q_1, \Sigma, \delta_1, p_0, F_1)$, where $Q_1 = \{p_0, p_1, \ldots\}$

 $M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$, where $Q_2 = \{q_0, q_1, \ldots\}$

where $L(M_1) = L_1$ and $L(M_2) = L_2$.

• Construct M where:

 $Q = Q_1 \times Q_2$

 $= \{[p_0, q_0], [p_0, q_1], [p_0, q_2], \ldots\}$

 Note that M has a state for each pair of states in M_1 and M_2

 $\Sigma = $ as with M_1 and M_2

 $F = F_1 \times F_2$

 start state = $[p_0, q_0]$

 $\delta([p_i, q_j], a) = [\delta_1(p_i, a), \delta_2(q_j, a)]$

 for all $[p_i, q_j]$ in Q and a in Σ
• Example:

The construct gives:

\[Q = Q_1 \times Q_2 \]
\[= \{ [p_0, q_0], [p_0, q_1], [p_0, q_2], [p_1, q_0], [p_1, q_1], [p_1, q_2] \} \]

\[\Sigma = \{ 0, 1 \} \]

\[F = \{ [p_1, q_2] \} \]

start state = \([p_0, q_0]\)

\[\delta - \text{Some examples:} \]
\[\delta([p_0, q_2], 0) = [\delta_1(p_0, 0), \delta_2(q_2, 0)] = [p_1, q_2] \]
\[\delta([p_1, q_2], 1) = [\delta_1(p_1, 1), \delta_2(q_2, 1)] = [p_1, q_2] \]
• Final Result:

![Diagram with states and transitions]

• Question: What if Σ_1 does not equal Σ_2?