Finite Automata

Reading: Chapter 2
Deterministic Finite State Automata (DFA)

- One-way, infinite tape, broken into cells
- One-way, read-only tape head.
- Finite control, i.e., a program, containing the position of the read head, current symbol being scanned, and the current “state.”
- A string is placed on the tape, read head is positioned at the left end, and the DFA will read the string one symbol at a time until all symbols have been read. The DFA will then either accept or reject.
• The finite control can be described by a transition diagram:

• Example #1:

One state is final/accepting, all others are rejecting.
• What strings does this DFA accept?
• Example #2:

What strings does this DFA accept?
• Note that every state in a DFA has an implicit “assertion”
Formal Definition of a DFA

- A DFA is a five-tuple:

\[M = (Q, \Sigma, \delta, q_0, F) \]

- \(Q \): A finite set of states
- \(\Sigma \): A finite input alphabet
- \(q_0 \): The initial/starting state, \(q_0 \) is in \(Q \)
- \(F \): A set of (zero or more) final/accepting states, which is a subset of \(Q \)
- \(\delta \): A transition function, which is a total function from \(Q \times \Sigma \) to \(Q \)

\[\delta: (Q \times \Sigma) \rightarrow Q \]

\(\delta(q,s) = q' \) is defined for any \(q \) in \(Q \) and \(s \) in \(\Sigma \), and is equal to another state \(q' \) in \(Q \).

Intuitively, \(\delta(q,s) \) is the state entered by \(M \) after reading symbol \(s \) while in state \(q \).
• For example #1:

\[Q = \{ q_0, q_1 \} \]
\[\Sigma = \{ 0, 1 \} \]

Start state is \(q_0 \)

\[F = \{ q_0 \} \]

\[\delta: \]

\[
\begin{array}{c|cc}
 & 0 & 1 \\
 q_0 & q_1 & q_0 \\
 q_1 & q_0 & q_1 \\
\end{array}
\]
• For example #2:

\[Q = \{q_0, q_1, q_2\} \]
\[\Sigma = \{a, b, c\} \]
Start state is \(q_0 \)
\[F = \{q_2\} \]

\[\delta: \]

\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
q_0 & q_0 & q_0 & q_1 \\
q_1 & q_1 & q_1 & q_2 \\
q_2 & q_2 & q_2 & q_2 \\
\end{array}
\]

• Since \(\delta \) is a **total** function, it is defined for every state \(q \) and symbol \(s \).
• In other words, at each step \(M \) has exactly one option.
• It follows that for a given string, there is exactly one computation.
Give a DFA that accepts the strings in the set:

\(\{ x \mid x \text{ is a string of (zero or more) a’s, b’s and c’s such that } x \text{ contains the substring } aa \} \)
Give a DFA M such that:

$L(M) = \{x \mid x \text{ is a string of (zero or more) a’s, b’s and c’s such that } x \text{ does not contain the substring } aa \}$
• Give a DFA M such that:

$L(M) = \{x \mid x \text{ is a string of } a\text{'s, } b\text{'s and } c\text{'s such that } x \text{ contains the substring } aba\}$
• Give a DFA M such that:

$L(M) = \{x \mid x \text{ is a string of 0's and 1's such that } x \text{ contains an even number of 0's and an even number of 1's}\}$
• **Questions:**
 – Which of the following are “valid” DFAs?
 • No final state
 • Unreachable state
 • Missing transition
 • Disconnected components
 • Single state
 – How difficult would it be to simulate a specific DFA?
 – How difficult would it be to automatically generate DFA simulators, i.e., Lex?
Extension of δ to Strings

$\delta^\wedge : (Q \times \Sigma^*) \rightarrow Q$

$\delta^\wedge(q,x)$ – The state entered after reading string x having started in state q.

Formally:

1) $\delta^\wedge(q, \varepsilon) = q$, and $|x| = 0$, i.e., $x = \varepsilon$
2) For all w in Σ^* and a in Σ $|x| \geq 1$, i.e., $x = wa$

$\delta^\wedge(q,wa) = \delta(\delta^\wedge(q,w), a)$

Note that this definition is for any string x in Σ^*, where $|x| \geq 0$.
Recall Example #1:

What is $\delta^*(q_0, 011)$? Informally, it is the state entered by M after processing 011 having started in state q_0.

Formally:

$$
\begin{align*}
\delta^*(q_0, 011) &= \delta(\delta^*(q_0, 01), 1) \\
&= \delta(\delta(\delta^*(q_0, 0), 1), 1) \\
&= \delta(\delta(\delta(q_0, \varepsilon), 0), 1), 1) \\
&= \delta(\delta(q_0, 0), 1), 1) \\
&= \delta(q_1, 1) \\
&= q_1
\end{align*}
$$

Is 011 accepted? No, since $\delta^*(q_0, 011) = q_1$ is not a final state.
• Note that:

$$\delta^\wedge (q,a) = \delta(\delta^\wedge(q, \varepsilon), a) \quad \text{by rule \#2}$$

$$= \delta(q, a) \quad \text{by rule \#1}$$

• More generally, it is obvious from the definition of δ^\wedge that:

$$\delta^\wedge (q, a_1a_2\ldots a_n) = \delta(\ldots\delta(\delta(q, a_1), a_2)\ldots), a_n)$$

• Hence, we can (informally) use δ in place of δ^\wedge:

$$\delta^\wedge(q, a_1a_2\ldots a_n) = \delta(q, a_1a_2\ldots a_n)$$

• In other words, δ^\wedge doesn’t really add anything to δ.
Consider the following DFA:

What is $\delta(q_0, 011)$? Informally, it is the state entered by M after processing 011 having started in state q_0.

Formally:

$$\delta(q_0, 011) = \delta (\delta(q_0,01), 1)$$
$$= \delta (\delta (\delta(q_0,0), 1), 1)$$
$$= \delta (\delta (q_1, 1), 1)$$
$$= \delta (q_1, 1)$$
$$= q_1$$

Is 011 accepted? No, since $\delta(q_0, 011) = q_1$ is not a final state.
• Recall Example #2:

\[\delta(q_1, 10) = \delta(\delta(q_1,1), 0) \]
\[= \delta(q_1, 0) \]
\[= q_2 \]

• Based on the above, can we conclude that 10 is accepted?

• No, since \(\delta(q_0, 10) = q_1 \) is not a final state. The fact that \(\delta(q_1, 10) = q_2 \) is irrelevant!
Definitions for DFAs

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let w be in Σ^*. Then w is accepted by M if $\delta(q_0, w) = p$ for some state p in F, i.e., $\delta(q_0, w) \in F$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then the language accepted by M, denoted $L(M)$, is:

 $$\{w \mid w \text{ is in } \Sigma^* \text{ and } \delta(q_0, w) \in F\}$$

- Other, equivalent, less formal definitions for $L(M)$:

 $$\{w \mid w \text{ is in } \Sigma^* \text{ and } \delta(q_0, w) \text{ is in } F\}$$

 $$\{w \mid w \text{ is in } \Sigma^* \text{ and } w \text{ is accepted by } M\}$$
Definitions for DFAs

Let \(L \) be a language. Then \(L \) is a regular language iff there exists a DFA \(M \) such that \(L = L(M) \).

Let \(M_1 = (Q_1, \Sigma_1, \delta_1, q_0, F_1) \) and \(M_2 = (Q_2, \Sigma_2, \delta_2, p_0, F_2) \) be DFAs. Then \(M_1 \) and \(M_2 \) are equivalent iff \(L(M_1) = L(M_2) \).
• **Notes:**
 – A DFA $M = (Q, \Sigma, \delta, q_0, F)$ partitions the set Σ^* into two sets: $L(M)$ and $\Sigma^* - L(M)$.
 – In the definition of a regular language, “=” means *exactly* equals.
 – If $L = L(M)$ then L is a subset of $L(M)$, and $L(M)$ is a subset of L.
 – Similarly, if $L(M_1) = L(M_2)$ then $L(M_1)$ is a subset of $L(M_2)$, and $L(M_2)$ is a subset of $L(M_1)$.
 – Some languages are regular, others are not. For example, if

 \[
 L_1 = \{ x \mid x \text{ is a string of 0's and 1's containing an even number of 1's} \} \text{ and } \\
 L_2 = \{ x \mid x = 0^n1^n \text{ for some } n \geq 0 \}
 \]

 then L_1 is regular but L_2 is not.

• **Questions:**
 – How do we determine whether or not a given language is regular?
• Give a DFA M such that:

$$L(M) = \{x \mid x \text{ is a string of } a\text{'s and } b\text{'s such that } x \text{ contains both } aa \text{ and } bb \}$$
• Let $\Sigma = \{0, 1\}$. Give DFAs for $\{\}$, $\{\varepsilon\}$, Σ^*, and Σ^+.

For $\{\}$:

For $\{\varepsilon\}$:

For Σ^*:

For Σ^+:
Nondeterministic Finite State Automata (NFA)

- An NFA is a five-tuple:

\[M = (Q, \Sigma, \delta, q_0, F) \]

- \(Q \) A finite set of states
- \(\Sigma \) A finite input alphabet
- \(q_0 \) The initial/starting state, \(q_0 \) is in \(Q \)
- \(F \) A set of final/accepting states, which is a subset of \(Q \)
- \(\delta \) A transition function, which is a total function from \(Q \times \Sigma \) to \(2^Q \)

\[\delta: (Q \times \Sigma) \to 2^Q \]

\(2^Q \) is the power set of \(Q \), the set of all subsets of \(Q \)

\[\delta(q,s) \]

The set of all states \(p \) such that there is a transition labeled \(s \) from \(q \) to \(p \)

\(\delta(q,s) \) is a function from \(Q \times \Sigma \) to \(2^Q \) (but not to \(Q \)
• Example #1:

$Q = \{q_0, q_1, q_2\}$

$\Sigma = \{0, 1\}$

Start state is q_0

$F = \{q_2\}$

$\delta:$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>${q_0, q_1}$</td>
<td>${}$</td>
</tr>
<tr>
<td>q_1</td>
<td>${}$</td>
<td>${q_1, q_2}$</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_2}$</td>
<td>${q_2}$</td>
</tr>
</tbody>
</table>

• How is a string such as 011 processed?
• Example #1:

Q = \{q_0, q_1, q_2\}
\Sigma = \{0, 1\}
Start state is q_0
F = \{q_2\}
\delta:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>{q_0, q_1}</td>
<td>{}</td>
</tr>
<tr>
<td>q_1</td>
<td>{}</td>
<td>{q_1, q_2}</td>
</tr>
<tr>
<td>q_2</td>
<td>{q_2}</td>
<td>{q_2}</td>
</tr>
</tbody>
</table>

• A string is said to be accepted \textit{if there exists} a path to some state in F that uses all the symbols in the string (try 011, 000, 01110, 1010, 0011).

• The language accepted by an NFA is the set of all accepted strings.
 – The above NFA accepts the set of all strings of 0’s and 1’s that start with one or more 0’s, followed by one or more 1’s, followed by any sequence of 0’s and 1’s.
• Example #2:

\[Q = \{q_0, q_1, q_2, q_3, q_4\} \]
\[\Sigma = \{0, 1\} \]
Start state is \(q_0 \)
\[F = \{q_2, q_4\} \]

\[\delta: \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{q_0, q_3}</td>
<td>{q_0, q_1}</td>
</tr>
<tr>
<td>(q_1)</td>
<td>{}</td>
<td>{q_2}</td>
</tr>
<tr>
<td>(q_2)</td>
<td>{q_2}</td>
<td>{q_2}</td>
</tr>
<tr>
<td>(q_3)</td>
<td>{q_4}</td>
<td>{}</td>
</tr>
<tr>
<td>(q_4)</td>
<td>{q_4}</td>
<td>{q_4}</td>
</tr>
</tbody>
</table>
• Notes:
 – \(\delta(q,s) \) may not be defined for some \(q \) and \(s \) (why?).
 – Could the previous two languages be accepted by a DFAs (exercise)?

• Question: How does an NFA find the correct/accepting path for a given string?
 – Doesn’t really matter
 – NFAs are a non-intuitive computing model.
 • Designing NFAs is not a typical task.
 • Regardless, the notions of string and language acceptance are well-defined.
 – We are primarily interested in NFAs as language defining devices, i.e., do NFAs accept languages that DFAs do not?
 – Other questions are secondary, e.g., whether or not there is an algorithm for finding an accepting path through an NFA for a given string.
• All that having been said…

• Yes, determining if a given NFA (example #2) accepts a given string (001) can be done algorithmically:

• Each level will have at most n states
- Another example (010):

![Diagram of a finite automaton with states q₀, q₁, q₂, q₃, q₄.

- All paths have been explored, and none lead to an accepting state.

not accepted
• How difficult would it be to simulate an NFA?

• Would the DFA simulation algorithm work?
• Let $\Sigma = \{a, b, c\}$. Give an NFA M that accepts:

$$L = \{x \mid x \text{ is in } \Sigma^* \text{ and } x \text{ contains } ab\}$$

Is L a subset of $L(M)$?

Is $L(M)$ a subset of L?

• Is an NFA necessary? Could a DFA accept L? Try and give an equivalent DFA as an exercise.
• Let $\Sigma = \{a, b\}$. Give an NFA M that accepts:

$$L = \{x \mid x \text{ is in } \Sigma^* \text{ and the third to the last symbol in } x \text{ is } b\}$$

![Diagram of NFA](image)

Is L a subset of $L(M)$?
Is $L(M)$ a subset of L?

• What if q_3 had a transition to itself on a or b?

• Give an equivalent DFA as an exercise.
Extension of δ to Strings

What we currently have: \[\delta : (Q \times \Sigma) \to 2^Q \]

What we want (why?): \[\delta^\wedge : (Q \times \Sigma^*) \to 2^Q \]

$\delta^\wedge(q,x)$ – The set of states the NFA could be in after reading string x having started in state q.

Formally:

1) $\delta^\wedge(q, \varepsilon) = \{q\}$, and $|x|=0$

2) For all w in Σ^* and a in Σ, $|x|\geq 1$, i.e., $x=wa$

 if $\delta^\wedge(q, w) = \{p_1, p_2, \ldots, p_k\}$, and

 \[\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, \ldots, r_m\} \]

 then $\delta^\wedge(q, wa) = \{r_1, r_2, \ldots, r_m\}$
• Example:

What is $\delta^\wedge(q_0, 01)$?

Informally: The set of states the NFA could be in after processing 01, i.e., $\{q_2, q_3\}$

Formally: (bottom up)

a) $\delta^\wedge(q_0, \varepsilon) = \{q_0\}$
 def of δ^\wedge, line #1

b) $\delta^\wedge(q_0, 0) = \delta(q_0, 0) = \{q_1, q_2, q_3\}$
 def of δ^\wedge, line #2, and a)

c) $\delta^\wedge(q_0, 01) = \delta(q_1, 1) \cup \delta(q_2, 1) \cup \delta(q_3, 1)$
 def of δ^\wedge, line #2, and b)

 $= \{q_2, q_3\} \cup \{q_3\} \cup \{\}$
 def of δ

 $= \{q_2, q_3\}$

Is 01 accepted? Yes! (see the book for a longer example)
• Note that just like with DFAs, δ^\wedge is a direct extension of δ, and doesn’t really add anything.

• Consequently we can use δ in place of δ^\wedge, i.e.,

$$\delta^\wedge(q, a_1a_2...a_n) = \delta(q, a_1a_2...a_n)$$
Definitions for NFAs

• Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA and let w be in Σ^*. Then w is accepted by M iff $\delta(q_0, w)$ contains at least one state in F, i.e., $\delta(q_0, w) \cap F \neq \emptyset$.

• Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA. Then the language accepted by M is the set:

$$L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } \delta(q_0, w) \cap F \neq \emptyset\}$$

• Other, equivalent, less formal definitions:

$$L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } \delta(q_0, w) \text{ contains at least one state in } F\}$$

$$L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } w \text{ is accepted by } M\}$$
Equivalence of DFAs and NFAs

- Do DFAs and NFAs accept the same class of languages?

- Do they accept different classes of languages?
 - Is there a language L that is accepted by a DFA, but not by any NFA?
 - Is there a language L that is accepted by an NFA, but not by any DFA?

- Perhaps they accept overlapping classes of languages.

- In other words, is one of these two machine models more “powerful” than the other?
• Observation: Every DFA is an NFA.

• Consider the following DFA:

\[
Q = \{ q_0, q_1, q_2 \}
\]
\[
\Sigma = \{ a, b, c \}
\]
Start state is \(q_0 \)
\[
F = \{ q_2 \}
\]

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>
• An Equivalent NFA:

\[Q = \{ q_0, q_1, q_2 \} \]
\[\Sigma = \{ a, b, c \} \]
Start state is \(q_0 \)
F = \(\{ q_2 \} \)

\[\delta: \]

\[
\begin{array}{c|ccc}
\delta & a & b & c \\
\hline
q_0 & \{ q_0 \} & \{ q_0 \} & \{ q_1 \} \\
q_1 & \{ q_1 \} & \{ q_1 \} & \{ q_2 \} \\
q_2 & \{ q_2 \} & \{ q_2 \} & \{ q_2 \} \\
\end{array}
\]
• Therefore, if \(L \) is a regular language then there exists an NFA \(M \) such that \(L = L(M) \).

• Thus, NFAs accept all regular languages, i.e., NFAs are at least as “powerful” as DFAs.

• Stated formally:

\[\textbf{Lemma 1:} \text{ Let } M \text{ be an DFA. Then there exists a NFA } M' \text{ such that } L(M) = L(M'). \]

\[\textbf{Proof:} \text{ Every DFA is an NFA. Hence, if we let } M' = M, \text{ then it follows that } L(M') = L(M). \]

• So NFAs accept the regular languages, but do they accept more?
Lemma 2: Let M be an NFA. Then there exists a DFA M’ such that L(M) = L(M’).

Proof: (sketch)

Let M = (Q, Σ, δ, q₀, F).

Define a DFA M’ = (Q’, Σ, δ’, q’₀, F’) as:

\[Q' = 2^Q = \{ Q_0, Q_1, \ldots, \} \]

where each state in M’ corresponds to a subset of states from M

\[F' = \{ Q_u \mid Q_u \text{ contains at least one state in } F \} \]

\[q'_{0} = \{ q_0 \} \]

\[\delta'(Q_u, a) = \bigcup_{p \in Q_u} \delta(p, a) \]
Example:

\[Q = \{ q_0, q_1 \} \]
\[\Sigma = \{ 0, 1 \} \]
Start state is \(q_0 \)
\[F = \{ q_0 \} \]

\[\delta: \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{q_1}</td>
<td>{}</td>
</tr>
<tr>
<td>(q_1)</td>
<td>{q_0, q_1}</td>
<td>{q_1}</td>
</tr>
</tbody>
</table>

\[0, 1 \]

\[q_0 \rightarrow q_1 \]

\[0 \rightarrow 0 \]
• Construct DFA M' as follows:

\[
\begin{align*}
\delta(q_0, 0) &= \{q_1\} \\
\delta(q_0, 1) &= \{} \\
\delta(q_1, 0) &= \{q_0, q_1\} \\
\delta(q_1, 1) &= \{q_1\} \\
\delta(q_0, 0) \cup \delta(q_1, 0) &= \{q_0, q_1\} \\
\delta(q_0, 1) \cup \delta(q_1, 1) &= \{q_1\}
\end{align*}
\]

\[
\begin{align*}
\delta'(\{q_0\}, 0) &= \{q_1\} \\
\delta'(\{q_0\}, 1) &= \{} \\
\delta'(\{q_1\}, 0) &= \{q_0, q_1\} \\
\delta'(\{q_1\}, 1) &= \{q_1\} \\
\delta'(\{q_0, q_1\}, 0) &= \{q_0, q_1\} \\
\delta'(\{q_0, q_1\}, 1) &= \{q_1\}
\end{align*}
\]
• So why does this construction work?

• Consider a simulation of the original NFA on the string 0010

• Consider a simulation of the resulting DFA on the same string

• So does this complete the proof?

• No! Technically, we need to prove that a string x is accepted by the DFA if and only if it is accepted by the NFA.
 – Performed by induction on the length of x
 – See the book
• Note the *constructive* nature of the proof, i.e., it shows how to construct the DFA (not all proofs are constructive).

• In fact, the construction could be programmed…

• The construction is not particularly efficient, however, i.e., the resulting DFA is not guaranteed to be minimum.

• As an exercise, try the construction on some of the NFAs from class.
Theorem: Let \(L \) be a language. Then there exists an DFA \(M \) such that \(L = L(M) \) iff there exists an NFA \(M' \) such that \(L = L(M') \).

Proof:

(if) Suppose there exists an NFA \(M' \) such that \(L = L(M') \). Then by Lemma 2 there exists an DFA \(M \) such that \(L = L(M) \).

(only if) Suppose there exists an DFA \(M \) such that \(L = L(M) \). Then by Lemma 1 there exists an NFA \(M' \) such that \(L = L(M') \).

Corollary: The NFAs define the regular languages.
• Note: Suppose \(R = \{ \} \)

\[
\delta'(R, 0) = \bigcup_{q \in R} \delta(q, 0) = \{ \} \quad \text{Since } R = \{ \}
\]

• Exercise - Convert the following NFA to a DFA:

\(Q = \{ q_0, q_1, q_2 \} \)
\(\Sigma = \{ 0, 1 \} \)
Start state is \(q_0 \)
\(F = \{ q_0 \} \)

\[
\begin{array}{ccc}
\delta: & 0 & 1 \\
q_0 & \{ q_0, q_1 \} & \{ \} \\
q_1 & \{ q_1 \} & \{ q_2 \} \\
q_2 & \{ q_2 \} & \{ q_2 \}
\end{array}
\]
NFAs with ε Moves

- An NFA-ε is a five-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q A finite set of states
- Σ A finite input alphabet
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, which is a total function from $Q \times (\Sigma \cup \{\varepsilon\})$ to 2^Q

$$\delta: (Q \times (\Sigma \cup \{\varepsilon\})) \to 2^Q$$

- The set of all states p such that there is a transition labeled a from q to p, where a is in $\Sigma \cup \{\varepsilon\}$

- Sometimes referred to as an NFA-ε other times, simply as an NFA.
- Example #1:

\[
\begin{align*}
\delta: & \quad 0 \quad 1 \quad \varepsilon \\
q_0 & \{ q_0 \} \quad \{ \} \quad \{ q_1 \} \\
q_1 & \{ q_1, q_2 \} \quad \{ q_0, q_3 \} \quad \{ q_2 \} \\
q_2 & \{ q_2 \} \quad \{ q_2 \} \quad \{ \} \\
q_3 & \{ \} \quad \{ \} \quad \{ \} \\
\end{align*}
\]

- A string \(w = w_1 w_2 \ldots w_n \) is processed as \(w = \varepsilon^* w_1 \varepsilon^* w_2 \varepsilon^* \ldots \varepsilon^* w_n \varepsilon^* \)

- Example: all computations on \(00 \):

\[
0 \quad \varepsilon \quad 0 \\
q_0 \quad q_0 \quad q_1 \quad q_2 \\
\]

:
• Example #2:

What language does the above NFA-ε accept?
• Example #3:
Informal Definitions

• Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA-ε.

• A String w in Σ^* is *accepted* by M iff there exists a path in M from q_0 to a state in F labeled by w and zero or more ε transitions.

• The language accepted by M is the set of all strings from Σ^* that are accepted by M.

• Formalizing these concepts is a bit more tricky than it was for DFAs and NFAs…
ε-closure

- Define ε-closure(q) to denote the set of all states reachable from q by zero or more ε transitions.

- Examples: (for example #1)

 \[
 \begin{align*}
 \text{ε-closure}(q_0) &= \{q_0, q_1, q_2\} & \text{ε-closure}(q_2) &= \{q_2\} \\
 \text{ε-closure}(q_1) &= \{q_1, q_2\} & \text{ε-closure}(q_3) &= \{q_3\}
 \end{align*}
 \]

- Formal (recursive) Definition:

 For any state q
 1) \(q \in \text{ε-closure}(q)\)
 2) if \(p \in \text{ε-closure}(q)\) and \(r \in \delta(p, \varepsilon)\) then \(r \in \text{ε-closure}(q)\)
Extension of δ to Strings

What we currently have: $\delta : (Q \times (\Sigma \cup \{\epsilon\})) \rightarrow 2^Q$

What we want (why?): $\delta^\wedge : (Q \times \Sigma^*) \rightarrow 2^Q$

$\delta^\wedge(q,w)$ – The set of states the NFA-ϵ could be in after reading string w having started in state q.

Formally:

1) $\delta^\wedge(q, \epsilon) = \epsilon$-closure($q$), and $|x| = 0$

2) For all w in Σ^* and a in Σ, $|x| \geq 1$, i.e., $x=wa$
 if $\delta^\wedge(q, w) = \{p_1, p_2, \ldots, p_k\}$, and $\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, \ldots, r_m\}$
 then $\delta^\wedge(q,wa) = \bigcup_{i=1}^m \epsilon$-closure($r_i$)
• Note the difference between:

\[\delta(q_0, 0) = q_0 \]
\[\delta^e(q_0, 0) = \{q_0, q_1, q_2\} \]

So, unlike with DFAs and NFAs, we can’t substitute \(\delta \) for \(\delta^e \).

• See the book for a sample derivation.
Definitions for NFA-ε Machines

• Let \(M = (Q, \Sigma, \delta, q_0, F) \) be an NFA-ε and let \(w \) be in \(\Sigma^* \). Then \(w \) is \textit{accepted} by \(M \) iff \(\delta^\epsilon(q_0, w) \) contains at least one state in \(F \), i.e., \(\delta^\epsilon(q_0, w) \cap F \neq \emptyset \).

• Let \(M = (Q, \Sigma, \delta, q_0, F) \) be an NFA-ε. Then the \textit{language accepted} by \(M \) is the set:

\[
L(M) = \{ w \mid w \text{ is in } \Sigma^* \text{ and } \delta^\epsilon(q_0, w) \cap F \neq \emptyset \}
\]

• Other equivalent, less formal, definitions:

\[
L(M) = \{ w \mid w \text{ is in } \Sigma^* \text{ and } \delta^\epsilon(q_0, w) \text{ contains at least one state in } F \}
\]

\[
L(M) = \{ w \mid w \text{ is in } \Sigma^* \text{ and } w \text{ is accepted by } M \}
\]
Equivalence of NFAs and NFA-εs

- Do NFAs and NFA-ε machines accept the same class of languages?

- Do they accept different classes of languages?
 - Is there a language L that is accepted by a NFA, but not by any NFA-ε?
 - Is there a language L that is accepted by an NFA-ε, but not by any NFA?

- Perhaps they accept overlapping classes of languages.

- In other words, is one of these two machine models more “powerful” than the other?
• Observation: Every NFA is an NFA-ε.

• Therefore, if L is a regular language then there exists an NFA-ε M such that \(L = L(M) \).

• It follows that NFA-ε machines accept all regular languages.

• Stated formally:

Lemma 1: Let M be an NFA. Then there exists a NFA-ε M’ such that \(L(M) = L(M’) \).

Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it follows that \(L(M’) = L(M) \).

• But do NFA-ε machines accept more?
Example: (NFA)

\[Q = \{ q_0, q_1 \} \]
\[\Sigma = \{ 0, 1 \} \]
Start state is \(q_0 \)
\[F = \{ q_0 \} \]

\[\delta: \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{ q_1 }</td>
<td>{ }</td>
</tr>
<tr>
<td>(q_1)</td>
<td>{ q_0, q_1 }</td>
<td>{ q_1 }</td>
</tr>
</tbody>
</table>

\[\rightarrow q_0 \quad 0,1 \]
\[\rightarrow q_1 \quad 0 \]
\[\leftarrow q_0 \quad 0 \]
Example: NFA-ε

Q = \{q_0, q_1\}
Σ = \{0, 1\}
Start state is q_0
F = \{q_0\}

\[\begin{array}{c|c|c|c}
\delta: & 0 & 1 & \epsilon \\
\hline
q_0 & \{q_1\} & \{\} & \{\} \\
q_1 & \{q_0, q_1\} & \{q_1\} & \{\} \\
\end{array} \]
Lemma 2: Let M be an NFA-ε. Then there exists a NFA M' such that $L(M) = L(M')$.

Proof: (sketch)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA-ε.

Define an NFA $M' = (Q, \Sigma, \delta', q_0, F')$ as:

- $F' = F \cup \{q_0\}$ if ε-closure(q_0) contains at least one state from F
- $F' = F$ otherwise

- $\delta'(q, a) = \delta^\wedge(q, a)$ - for all q in Q and a in Σ

Notes:
- δ': $(Q \times \Sigma) \rightarrow 2^Q$ is a function
- M' has the same state set, the same alphabet, and the same start state as M
- M' has no ε transitions
• Example:

Step #1:
- Same state set as M
- \(q_0 \) is the starting state
• Example:

![DFA Diagram]

• Step #2:
 – q_0 becomes a final state

$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{1} q_2 \xrightarrow{0} q_3$
• Example:

Step #3:
• Example:

\[
\begin{array}{c}
q_0 \\
0 \\
\epsilon \\
q_1 \\
0 \\
1 \\
q_2 \\
0,1 \\
\epsilon \\
q_3 \\
\end{array}
\]

• Step #4:
• Example:

![Example Automaton Diagram](image)

• Step #5:

![Step 5 Automaton Diagram](image)
• Example:

![Example Diagram]

• Step #6:

![Step #6 Diagram]
• Example:

```
q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \xrightarrow{0} q_2 \xrightarrow{1} q_3
```

• Step #7:

```
q_0 \xrightarrow{0,1} q_0 \xrightarrow{0,1} q_1 \xrightarrow{1} q_1 \xrightarrow{0,1} q_2 \xrightarrow{1} q_2 \xrightarrow{0,1} q_3
```
• Example:

![Example Diagram]

• Step #8:
 – Done!
Theorem: Let L be a language. Then there exists an NFA M such that $L = L(M)$ iff there exists an NFA-ϵ M' such that $L = L(M')$.

Proof:
(if) Suppose there exists an NFA-ϵ M' such that $L = L(M')$. Then by Lemma 2 there exists an NFA M such that $L = L(M)$.

(only if) Suppose there exists an NFA M such that $L = L(M)$. Then by Lemma 1 there exists an NFA-ϵ M' such that $L = L(M')$.

Corollary: The NFA-ϵ machines define the regular languages.
• Finally, once again note the *constructive* nature of the proof, i.e., it shows how to construct the NFA.

• In fact, the construction could be programmed…
• Give a DFA M such that:

$$L(M) = \{ x \mid x \text{ is a string of 0's and 1's and } |x| \geq 2 \}$$