Research Article

Zhenyu Guo, Kanishka Perera* and Wenming Zou

On Critical p-Laplacian Systems

DOI: 10.1515/ans-2017-0629
Received February 23, 2016; revised July 13, 2017; accepted July 13, 2017

Abstract: We consider the critical p-Laplacian system

$$
\begin{align*}
\Delta_p u - \frac{\lambda a}{p} |u|^{p-2} u|v|^b &= \mu_1 |u|^{p-2} u + \frac{\alpha y}{p^*} |u|^{q-2} u|v|^\beta, & x \in \Omega, \\
\Delta_p v - \frac{\lambda b}{p} |u|^a |v|^{b-2} v &= \mu_2 |v|^{p-2} v + \frac{\beta v}{p^*} |u|^a |v|^{\beta-2} v, & x \in \Omega,
\end{align*}
$$

where $\Delta_p u := \text{div}(\nabla |\nabla u|^{p-2} \nabla u)$ is the p-Laplacian operator defined on

$$D^{1,p}(\Omega) := \{u \in L^p(\mathbb{R}^N) : |\nabla u| \in L^p(\mathbb{R}^N)\},$$

endowed with the norm $\|u\|_{D^{1,p}} := \left(\int_{\mathbb{R}^N} |\nabla u|^p dx \right)^{\frac{1}{p}}$, $N \geq 3, 1 < p < N, \lambda, \mu_1, \mu_2 \geq 0, \gamma \neq 0, a, b, \alpha, \beta > 0$ satisfy $a + b = p, a + \beta = p^*$ or $ab = 0$; the critical Sobolev exponent, Ω is \mathbb{R}^N or a bounded domain in \mathbb{R}^N and $D_0^{1,p}(\Omega)$ is the closure of $C_0^\infty(\Omega)$ in $D^{1,p}(\mathbb{R}^N)$. Under suitable assumptions, we establish the existence and nonexistence of a positive least energy solution of this system. We also consider the existence and multiplicity of the nontrivial nonnegative solutions.

Keywords: Nehari Manifold, p-Laplacian Systems, Least Energy Solutions, Critical Exponent

MSC 2010: 35B33, 35J20, 58E05

Communicated by: Zhi-Qiang Wang

1 Introduction

Equations and systems involving the p-Laplacian operator have been extensively studied in the recent years (see, e.g., [2, 3, 5, 7–10, 13, 16, 17, 19, 20, 22, 23, 26] and the references therein). In the present paper, we study the critical p-Laplacian system

$$
\begin{align*}
\Delta_p u - \frac{\lambda a}{p} |u|^{p-2} u|v|^b &= \mu_1 |u|^{p-2} u + \frac{\alpha y}{p^*} |u|^{q-2} u|v|^\beta, & x \in \Omega, \\
\Delta_p v - \frac{\lambda b}{p} |u|^a |v|^{b-2} v &= \mu_2 |v|^{p-2} v + \frac{\beta v}{p^*} |u|^a |v|^{\beta-2} v, & x \in \Omega,
\end{align*}
$$

(1.1)

where $\Delta_p u := \text{div}(\nabla |\nabla u|^{p-2} \nabla u)$ is the p-Laplacian operator defined on

$$D^{1,p}(\mathbb{R}^N) := \{u \in L^p(\mathbb{R}^N) : |\nabla u| \in L^p(\mathbb{R}^N)\},$$

Zhenyu Guo: School of Sciences, Liaoning Shihua University, 113001 Fushun; and Department of Mathematical Sciences, Tsinghua University, 100084 Beijing, P. R. China, e-mail: guozy@163.com
*Corresponding author: Kanishka Perera: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA, e-mail: kperera@fit.edu
Wenming Zou: Department of Mathematical Sciences, Tsinghua University, 100084 Beijing, P. R. China, e-mail: wzou@math.tsinghua.edu.cn
endowed with the norm \(\|u\|_{D^{1,p}} := \left(\int_{\mathbb{R}^N} |\nabla u|^p \, dx \right)^{\frac{1}{p}}, N \geq 3, 1 < p < N, \right. \left. \alpha, \mu_1, \mu_2 \geq 0, \gamma \neq 0, a, b, \alpha, \beta > 1 \right. \) satisfy \(a + b = p, \alpha + \beta = p := \frac{Np}{N-p} \), the critical Sobolev exponent, \(\Omega \) is \(\mathbb{R}^N \) or a bounded domain in \(\mathbb{R}^N \) and \(D_0^{1,p}(\Omega) \) is the closure of \(C_0^\infty(\Omega) \) in \(D^{1,p}(\mathbb{R}^N) \). The case for \(p = 2 \) was thoroughly investigated by Peng, Peng and Wang [21] recently; some uniqueness, synchronization and non-degenerated properties were verified there. Note that we allow the powers in the coupling terms to be unequal. We consider the two cases

(H1) \(\Omega = \mathbb{R}^N, \lambda = 0, \mu_1, \mu_2 > 0; \)

(H2) \(\Omega \) is a bounded domain in \(\mathbb{R}^N, \lambda > 0, \mu_1, \mu_2 = 0, \gamma = 1. \)

Let

\[
S := \inf_{u \in D_0^{1,p}(\Omega) \backslash \{0\}} \frac{\int_{\Omega} |\nabla u|^p \, dx}{(\int_{\Omega} |u|^p \, dx)^{\frac{1}{p}}} \tag{1.2}
\]

be the sharp constant of imbedding for \(D_0^{1,p}(\Omega) \hookrightarrow L^p(\Omega) \) (see, e.g., [1]). Then \(S \) is independent of \(\Omega \) and is attained only when \(\Omega = \mathbb{R}^N \). In this case, a minimizer \(u \in D^{1,p}(\mathbb{R}^N) \) satisfies the critical \(p \)-Laplace equation

\[
- \Delta_p u = |u|^{p-2} u, \quad x \in \mathbb{R}^N. \tag{1.3}
\]

Damascelli, Merchán, Montoro and Sciunzi [14] recently showed that all solutions of (1.3) are radial and radially decreasing about some point in \(\mathbb{R}^N \) when \(\frac{2N}{N+2} < p < 2 \). Vétois [25] considered a more general equation and extended the result to the case \(1 < p < \frac{2N}{N+2} \), Sciunzi [24] extended this result to the case \(2 < p < N \). By exploiting the classification results in [4, 18], we see that, for \(1 < p < N \), all positive solutions of (1.3) are of the form

\[
U_{\epsilon,y}(x) := N \left(\frac{N-p}{p-1} \right)^{\frac{N-p}{p}} \left(\frac{\epsilon^{-1}}{\epsilon^{-1} + |x-y|^\frac{N-p}{p}} \right)^{\frac{N-p}{p}}, \quad \epsilon > 0, \quad y \in \mathbb{R}^N, \tag{1.4}
\]

and

\[
\int_{\mathbb{R}^N} |\nabla U_{\epsilon,y}|^p \, dx = \int_{\mathbb{R}^N} |U_{\epsilon,y}|^p \, dx = S^\frac{N}{p}. \tag{1.5}
\]

In case (H1), the energy functional associated with system (1.1) is given by

\[
I(u, v) = \frac{1}{p} \int_{\mathbb{R}^N} (|\nabla u|^p + |\nabla v|^p) - \frac{1}{p^*} \int_{\mathbb{R}^N} (|\mu_1| |u|^{p^*} + |\mu_2| |v|^{p^*} + \gamma |u|^\alpha |v|^\beta), \quad (u, v) \in D,
\]

where \(D := D^{1,p}(\mathbb{R}^N) \times D^{1,p}(\mathbb{R}^N) \), endowed with the norm \(\|(u, v)\|_D = \|u\|_{D^{1,p}} + \|v\|_{D^{1,p}} \). In this case, (1.1) with \(a = \beta \) and \(p = 2 \) is well studied by Chen and Zou [11, 12]. Define

\[
N = \left\{ (u, v) \in D : u \neq 0, v \neq 0, \int_{\mathbb{R}^N} |\nabla u|^p = \int_{\mathbb{R}^N} (|\mu_1| |u|^{p^*} + \frac{\alpha \gamma}{p^*} |u|^\alpha |v|^\beta), \right. \left. \int_{\mathbb{R}^N} |\nabla v|^p = \int_{\mathbb{R}^N} (|\mu_2| |v|^{p^*} + \frac{\beta \gamma}{p^*} |u|^\alpha |v|^\beta) \right\}. \]

It is easy to see that \(N \neq 0 \) and that any nontrivial solution of (1.1) is in \(N \). By a nontrivial solution we mean a solution \((u, v) \) such that \(u \neq 0 \) and \(v \neq 0 \). A solution is called a least energy solution if its energy is minimal among energies of all nontrivial solutions. A solution \((u, v) \) is positive if \(u > 0 \) and \(v > 0 \), and semitrivial if it is of the form \((u, 0) \) with \(u \neq 0 \) or \((0, v) \) with \(v \neq 0 \). Set \(A := \inf_{(u,v)\in N} I(u,v) \), and note that

\[
A = \inf_{(u,v)\in N} \frac{1}{N} \int_{\mathbb{R}^N} (|\nabla u|^p + |\nabla v|^p) = \inf_{(u,v)\in N} \frac{1}{N} \int_{\mathbb{R}^N} (|\mu_1| |u|^{p^*} + |\mu_2| |v|^{p^*} + \gamma |u|^\alpha |v|^\beta).
\]

Consider the nonlinear system of equations

\[
\begin{align*}
\mu_1 \frac{\partial^p x^p}{\partial x^p} + \frac{\alpha \gamma}{p^*} \frac{k^p}{p^*} l^{\frac{p^*}{p}} &= 1, \\
\mu_2 \frac{\partial^p x^p}{\partial x^p} + \frac{\beta \gamma}{p^*} \frac{k^p}{p^*} l^{\frac{p^*}{p}} &= 1, \\
k > 0, \quad l > 0.
\end{align*}
\]

Our main results in this case are the following.
Theorem 1.1. If (H1) holds and $y < 0$, then $A = \frac{1}{N}(\mu_1^{(N-p)/p} + \mu_2^{(N-p)/p})S^{N/p}$ and A is not attained.

Theorem 1.2. Let (H1) and the following conditions hold:

\begin{itemize}
\item[(C1)] $\frac{2}{N} < p < N$, $\alpha, \beta > p$ and
\end{itemize}

\begin{equation}
0 < y \leq \frac{3p^2}{(3-p)^2} \min\left\{ \frac{\mu_1}{\alpha} \left(\frac{\beta}{\beta - p} \right)^{\frac{\beta}{\beta - p}}, \frac{\mu_2}{\beta} \left(\frac{\alpha}{\alpha - p} \right)^{\frac{\alpha}{\alpha - p}} \right\}; \tag{1.7}
\end{equation}

\begin{itemize}
\item[(C2)] $\frac{2N}{N+2} < p < \frac{N}{2}$, $\alpha, \beta < p$ and
\end{itemize}

\begin{equation}
y \geq \frac{NP^2}{(N-p)^2} \max\left\{ \frac{\mu_1}{\alpha} \left(\frac{2 - \beta}{2 - \alpha} \right)^{\frac{2 - \beta}{2 - \alpha}}, \frac{\mu_2}{\beta} \left(\frac{2 - \alpha}{2 - \beta} \right)^{\frac{2 - \alpha}{2 - \beta}} \right\}. \tag{1.8}
\end{equation}

Then $A = \frac{1}{N}(k_0 + l_0)S^{N/p}$ and A is attained by $(\sqrt[k_0]{U_{x,y}}, \sqrt[l_0]{U_{x,y}})$, where (k_0, l_0) satisfies (1.6) and $k_0 = \min\{k : (k, l) satisfies (1.6)\}$.

Theorem 1.3. Assume that $\frac{2N}{N+2} < p < \frac{N}{2}$, $\alpha, \beta < p$ and (H1) holds. If $y > 0$, then A is attained by some (U, V), where U and V are positive, radially symmetric and decreasing.

Theorem 1.4 (Multiplicity). Assume that $\frac{2N}{N+2} < p < \frac{N}{2}$, $\alpha, \beta < p$ and (H1) holds. There exists

\begin{equation}
y_1 \in \left(0, \frac{NP^2}{(N-p)^2} \max\left\{ \frac{\mu_1}{\alpha} \left(\frac{2 - \beta}{2 - \alpha} \right)^{\frac{2 - \beta}{2 - \alpha}}, \frac{\mu_2}{\beta} \left(\frac{2 - \alpha}{2 - \beta} \right)^{\frac{2 - \alpha}{2 - \beta}} \right\} \right)
\end{equation}

such that for any $y \in (0, y_1)$ there exists a solution $(k(y), l(y))$ of (1.6) satisfying

\begin{equation}
I\left(\sqrt[k(y)]{U_{x,y}}, \sqrt[l(y)]{U_{x,y}}\right) > A
\end{equation}

and $(\sqrt[k(y)]{U_{x,y}}, \sqrt[l(y)]{U_{x,y}})$ is a (second) positive solution of (1.1).

For the case (H2), we have the following theorem.

Theorem 1.5. If (H2) holds, $p \leq \sqrt{N}$ and

\begin{equation}
0 < \lambda < \frac{p}{(a^a b^b)^{\frac{1}{b}}}, \lambda_1(\Omega),
\end{equation}

where $\lambda_1(\Omega) > 0$ is the first Dirichlet eigenvalue of $-\Delta_p$ in Ω, then system (1.1) has a nontrivial nonnegative solution.

2 Proof of Theorem 1.1

Lemma 2.1. Assume that (H1) holds and $-\infty < y < 0$. If A is attained by a couple $(u, v) \in \mathbb{N}$, then (u, v) is a critical point of I, i.e., (u, v) is a solution of (1.1).

Proof. Define

\begin{equation}
\mathcal{N}_1 := \left\{ (u, v) \in D : u \neq 0, v \neq 0, G_1(u, v) := \int_{\mathbb{R}^N} |Vu|^p - \int_{\mathbb{R}^N} \left(\frac{\mu_1}{\alpha} |u|^{\alpha} |v|^\beta + \frac{\mu_2}{\beta} |u|^\alpha |v|^\beta \right) = 0 \right\},
\end{equation}

\begin{equation}
\mathcal{N}_2 := \left\{ (u, v) \in D : u \neq 0, v \neq 0, G_2(u, v) := \int_{\mathbb{R}^N} |Vv|^p - \int_{\mathbb{R}^N} \left(\frac{\mu_1}{\alpha} |u|^\alpha |v|^\beta + \frac{\mu_2}{\beta} |u|^\alpha |v|^\beta \right) = 0 \right\}.
\end{equation}

Obviously, $\mathcal{N} = \mathcal{N}_1 \cap \mathcal{N}_2$. Suppose that $(u, v) \in \mathcal{N}$ is a minimizer for I restricted to \mathcal{N}. It follows from the standard minimization theory that there exist two Lagrange multipliers $L_1, L_2 \in \mathbb{R}$ such that

\begin{equation}
I'(u, v) + L_1 G_1'(u, v) + L_2 G_2'(u, v) = 0.
\end{equation}
Noticing that
\[I'(u, v)(u, 0) = G_1(u, v) = 0, \]
\[I'(u, v)(0, v) = G_2(u, v) = 0, \]
\[G'_1(u, v)(u, 0) = -(p^* - p) \int \mu_1|u|^p + (p - \alpha) \int \frac{\alpha y}{p^*|u|^\alpha |v|^\beta}, \]
\[G'_1(u, v)(0, v) = -\beta \int \frac{\beta y}{p^*|u|^\alpha |v|^\beta} > 0, \]
\[G'_2(u, v)(u, 0) = -\alpha \int \frac{\alpha y}{p^*|u|^\alpha |v|^\beta} > 0, \]
\[G'_2(u, v)(0, v) = -(p^* - p) \int \mu_2|v|^p + (p - \beta) \int \frac{\beta y}{p^*|u|^\alpha |v|^\beta}, \]
we get that
\[\begin{cases} G'_1(u, v)(u, 0)L_1 + G'_2(u, v)(u, 0)L_2 = 0, \\ G'_1(u, v)(0, v)L_1 + G'_2(u, v)(0, v)L_2 = 0 \end{cases} \]
and
\[\begin{align*} G'_1(u, v)(u, 0) + G'_1(u, v)(0, v) &= -(p^* - p) \int |\nabla u|^p \leq 0, \\ G'_2(u, v)(u, 0) + G'_2(u, v)(0, v) &= -(p^* - p) \int |\nabla v|^p \leq 0. \end{align*} \]
We claim that \(\int_{\mathbb{R}^N} |\nabla u|^p > 0 \). Indeed, if \(\int_{\mathbb{R}^N} |\nabla u|^p = 0 \), then by (1.2) we have
\[\int_{\mathbb{R}^N} |u|^p \leq S^{\frac{p^*}{p}} \left(\int_{\mathbb{R}^N} |\nabla u|^p \right)^{\frac{p^*}{p}} = 0. \]
Thus, a desired contradiction comes out, \(u \equiv 0 \) almost everywhere in \(\mathbb{R}^N \). Similarly, \(\int_{\mathbb{R}^N} |\nabla v|^p > 0 \). Hence,
\[|G'_1(u, v)(u, 0)| = -G'_1(u, v)(u, 0) > G'_1(u, v)(0, v), \]
\[|G'_2(u, v)(0, v)| = -G'_2(u, v)(0, v) > G'_2(u, v)(u, 0). \]
Define the matrix
\[M := \begin{pmatrix} G'_1(u, v)(u, 0) & G'_2(u, v)(u, 0) \\ G'_1(u, v)(0, v) & G'_2(u, v)(0, v) \end{pmatrix}. \]
Then
\[\det(M) = |G'_1(u, v)(u, 0)| \cdot |G'_2(u, v)(0, v)| - G'_1(u, v)(0, v) \cdot G'_2(u, v)(u, 0) > 0, \]
which means that \(L_1 = L_2 = 0 \).

Proof of Theorem 1.1. It is standard to see that \(A > 0 \). By (1.4), we know that \(\omega_{\mu_1} := \mu_1^{(p-N)/p} U_{1,0} \) satisfies
\[-\Delta_p u = \mu_1|u|^{p-2} u \text{ in } \mathbb{R}^N, \]
where \(\epsilon_1 = (1, 0, \ldots, 0) \in \mathbb{R}^N \) and
\[(u_R(x), v_R(x)) = (\omega_{\mu_1}(x), \omega_{\mu_1}(x + Re_1)), \]
where \(R \) is a positive number. Then \(v_R \to 0 \) weakly in \(D^{1,2}(\mathbb{R}^N) \) and \(v_R \to 0 \) weakly in \(L^{p^*}(\mathbb{R}^N) \) as \(R \to +\infty \). Hence,
\[\lim_{R \to +\infty} \int_{\mathbb{R}^N} u_R^{p^*} v_R^{p^*} \, dx = \lim_{R \to +\infty} \int_{\mathbb{R}^N} u_R^{p^*} v_R^{p^*} \, dx \leq \lim_{R \to +\infty} \left(\int_{\mathbb{R}^N} u_R^{p^*-1} v_R \, dx \right)^{\frac{p^*}{p^*-1}} \left(\int_{\mathbb{R}^N} v_R^{p^*} \, dx \right)^{\frac{p^*-1}{p^*-1}} = 0. \]
Therefore, for $R > 0$ sufficiently large, the system

\[
\begin{cases}
|\nabla u_R|^p \, dx = \int_{\mathbb{R}^N} \mu_1 u_R^\ast \, dx = t_R^p, \\
|\nabla v_R|^p \, dx = \int_{\mathbb{R}^N} \mu_2 v_R^\ast \, dx + \int_{\mathbb{R}^N} \frac{\alpha y}{p^s} u_R^\ast v_R^\beta \, dx,
\end{cases}
\]

has a solution (t_R, s_R) with

\[\lim_{R \to +\infty} [(t_R - 1) + |s_R - 1|] = 0.\]

Furthermore, $(\sqrt[p]{t_R} u_R, \sqrt[p]{s_R} v_R) \in \mathbb{N}$. Then, by (1.5), we obtain that

\[
A = \inf_{(u,v) \in \mathbb{N}} I(u, v) \leq I(\sqrt[p]{t_R} u_R, \sqrt[p]{s_R} v_R)
= \frac{1}{N} \left(t_R \int_{\mathbb{R}^N} |\nabla u_R|^p \, dx + s_R \int_{\mathbb{R}^N} |\nabla v_R|^p \, dx \right)
= \frac{1}{N} \left(t_R \mu_1 \frac{\alpha}{p} + s_R \mu_2 \frac{\alpha}{p} \right) S^\frac{N}{p},
\]

which implies that $A \leq \frac{1}{N} (\mu_1^{-\frac{(N-p)p}{p}} + \mu_2^{-\frac{(N-p)p}{p}}) S^{\frac{N}{p}}$. For any $(u, v) \in \mathbb{N}$,

\[
\int_{\mathbb{R}^N} |\nabla u|^p \, dx \leq \mu_1 \int_{\mathbb{R}^N} |u|^p \, dx \leq \mu_1 S^{-\frac{N}{p}} \left(\int_{\mathbb{R}^N} |\nabla u|^p \, dx \right)^\frac{p}{N}.
\]

Therefore, \(\int_{\mathbb{R}^N} |\nabla u|^p \, dx \geq \mu_1^{-\frac{N-p}{p}} S^{\frac{N}{p}} \). Similarly,

\[
\int_{\mathbb{R}^N} |\nabla v|^p \, dx \geq \mu_2^{-\frac{N-p}{p}} S^{\frac{N}{p}}.
\]

Then $A \geq \frac{1}{N} (\mu_1^{-\frac{(N-p)p}{p}} + \mu_2^{-\frac{(N-p)p}{p}}) S^{\frac{N}{p}}$. Hence,

\[A = \frac{1}{N} \left(\mu_1^{-\frac{N-p}{p}} + \mu_2^{-\frac{N-p}{p}} \right) S^{\frac{N}{p}}. \tag{2.1}\]

Suppose by contradiction that A is attained by some $(u, v) \in \mathbb{N}$. Then $(|u|, |v|) \in \mathbb{N}$ and $I(|u|, |v|) = A$. By Lemma 2.1, we see that $(|u|, |v|)$ is a nontrivial solution of (1.1). By the strong maximum principle, we may assume that $u > 0, v > 0$, and so $\int_{\mathbb{R}^N} u^{\alpha} v^\beta \, dx > 0$. Then

\[
\int_{\mathbb{R}^N} |\nabla u|^p \, dx < \mu_1 \int_{\mathbb{R}^N} |u|^p \, dx \leq \mu_1 S^{-\frac{N}{p}} \left(\int_{\mathbb{R}^N} |\nabla u|^p \, dx \right)^\frac{p}{N},
\]

which yields that

\[
\int_{\mathbb{R}^N} |\nabla u|^p \, dx > \mu_1^{-\frac{N-p}{p}} S^{\frac{N}{p}}.
\]

Similarly,

\[
\int_{\mathbb{R}^N} |\nabla v|^p \, dx > \mu_2^{-\frac{N-p}{p}} S^{\frac{N}{p}}.
\]

Therefore,

\[A = I(u, v) = \frac{1}{N} \int_{\mathbb{R}^N} (|\nabla u|^p + |\nabla v|^p) \, dx > \frac{1}{N} \left(\mu_1^{-\frac{N-p}{p}} + \mu_2^{-\frac{N-p}{p}} \right) S^{\frac{N}{p}},\]

which contradicts (2.1). \hfill \Box
3 Proof of Theorem 1.2

Proposition 3.1. Assume that \(c, d \in \mathbb{R} \) satisfy
\[
\begin{align*}
\mu_1 c^{\frac{p^*-p}{p^*}} + \frac{ay}{p^*} c^{\frac{a-p}{p^*}} d^{\frac{p}{p^*}} & \geq 1, \\
\mu_2 d^{\frac{p^*-p}{p^*}} + \frac{by}{p^*} c^{\frac{a-p}{p^*}} d^{\frac{p}{p^*}} & \geq 1, \\
c & > 0, \quad d > 0.
\end{align*}
\] (3.1)

If \(\frac{N}{2} < p < N, \alpha, \beta > p \) and (1.7) holds, then \(c + d \geq k + l \), where \(k, l \in \mathbb{R} \) satisfy (1.6).

Proof. Let \(y = c + d, x = \frac{c}{d}, y_0 = k + l \) and \(x_0 = \frac{k}{l} \). By (3.1) and (1.6), we have that
\[
y_{\frac{p^*-p}{p^*}} \geq \frac{(x + 1)^{\frac{p^*-p}{p^*}} x^{\frac{a-p}{p^*}}}{\mu_1 x^{\frac{p^*-p}{p^*}} + \frac{ay}{p^*} x^{\frac{a-p}{p^*}}} := f_1(x), \quad y_0^{\frac{p^*-p}{p^*}} = f_1(x_0),
\]
\[
y_{\frac{p^*-p}{p^*}} \geq \frac{(x + 1)^{\frac{p^*-p}{p^*}} x^{\frac{a-p}{p^*}}}{\mu_2 + \frac{by}{p^*} x^{\frac{a-p}{p^*}}} := f_2(x), \quad y_0^{\frac{p^*-p}{p^*}} = f_2(x_0).
\]

Thus,
\[
f_1'(x) = \frac{ay(x + 1) x^{\frac{a-p}{p^*}}}{pp^*(\mu_1 x^{\frac{p^*-p}{p^*}} + \frac{ay}{p^*} x^{\frac{a-p}{p^*}})^2} \left[-\frac{p^*(p^*-p)\mu_1 x^{\frac{p}{p^*}} + \beta x - (a - p)}{ay} \right],
\]
\[
f_2'(x) = \frac{by(x + 1) x^{\frac{a-p}{p^*}}}{pp^*(\mu_2 + \frac{by}{p^*} x^{\frac{a-p}{p^*}})^2} \left[(\beta - p)x^{\frac{p}{p^*}} - ax^{\frac{a-p}{p^*}} + \frac{p^*(p^*-p)\mu_2}{by} \right].
\]

Let \(x_1 = (\frac{p^*ay}{p^*(p^*-p)\mu_1})^{p/(\beta-p)}, x_2 = \frac{a-p}{\beta-p} \) and
\[
g_1(x) = -\frac{p^*(p^*-p)\mu_1 x^{\frac{p}{p^*}} + \beta x - (a - p)}{ay},
\]
\[
g_2(x) = (\beta - p)x^{\frac{p}{p^*}} - ax^{\frac{a-p}{p^*}} + \frac{p^*(p^*-p)\mu_2}{by}.
\]

It follows from (1.7) that
\[
\max_{x \in (0, +\infty)} g_1(x) = g_1(x_1) = (\beta - p) \left(\frac{p^*ay}{p^*(p^*-p)\mu_1} \right)^{\frac{p}{p^*}} - (a - p) \leq 0,
\]
\[
\min_{x \in (0, +\infty)} g_2(x) = g_2(x_2) = -p \left(\frac{a - p}{\beta - p} \right)^{\frac{p}{p^*}} + \frac{p^*(p^*-p)\mu_2}{by} \geq 0.
\]

That is, \(f_1(x) \) is strictly decreasing in \((0, +\infty)\) and \(f_2(x) \) is strictly increasing in \((0, +\infty)\). Hence,
\[
y_{\frac{p^*-p}{p^*}} \geq \max\{f_1(x), f_2(x)\} \geq \min_{x \in (0, +\infty)} \left(\max\{f_1(x), f_2(x)\} \right)
\]
\[
= \min_{\{l = f_2\}} \left(\max\{f_1(x), f_2(x)\} \right) = y_0^{\frac{p^*-p}{p^*}},
\]
where \(\{f_1 = f_2\} := \{x \in (0, +\infty) : f_1(x) = f_2(x)\} \).

\[\square\]

Remark 3.1. From the proof of Proposition 3.1 it is easy to see that system (1.6), under the assumption of Proposition 3.1, has only one real solution \((k, l) = (k_0, l_0)\), where \((k_0, l_0)\) is defined as in (1.9).
Define the functions

\[
\begin{aligned}
F_1(k, l) &= \mu_1 k^{\frac{p^* - p}{p}} + \frac{\alpha y}{p^*} k^{\frac{p^* - p}{p}} l^\beta - 1, \quad k > 0, \ l \geq 0, \\
F_2(k, l) &= \mu_2 l^{\frac{p^* - p}{p}} + \frac{\beta y}{p^*} k^{\frac{p^* - p}{p}} l^\beta - 1, \quad k \geq 0, \ l > 0,
\end{aligned}
\]

\[
l(k) := \left(\frac{p^*}{\alpha y}\right)^{\frac{\beta}{p}} k^{\frac{p^* - p}{p}} \left(1 - \mu_1 k^{\frac{p^* - p}{p}}\right)^{\frac{\beta}{p}}, \quad 0 < k \leq \mu_1^{-\frac{p^*}{p}}.
\]

\[
l(l) := \left(\frac{p^*}{\beta y}\right)^{\frac{\beta}{p}} l^{\frac{p^* - p}{p}} \left(1 - \mu_2 l^{\frac{p^* - p}{p}}\right)^{\frac{\beta}{p}}, \quad 0 < l \leq \mu_2^{-\frac{p^*}{p}}.
\]

Then \(F_1(k, l(k)) \equiv 0\) and \(F_2(k(l), l) \equiv 0\).

Lemma 3.2. Assume that \(\frac{2N}{N+2} < p < \frac{N}{2}, \alpha, \beta < p\) and \(y > 0\). Then

\[
F_1(k, l) = 0, \quad F_2(k, l) = 0, \quad k, l > 0,
\]

has a solution \((k_0, l_0)\) such that

\[
F_1(k, l(k)) < 0 \quad \text{for all } k \in (0, k_0),
\]

that is, \((k_0, l_0)\) satisfies (1.9). Similarly, (3.3) has a solution \((k_1, l_1)\) such that

\[
F_1(k(l), l) < 0 \quad \text{for all } l \in (0, l_1),
\]

that is,

\[(k_1, l_1)\) satisfies (1.6) and \(l_1 = \min\{l : (k, l) \text{ is a solution of (1.6)}\}\).

Proof. We only prove the existence of \((k_0, l_0)\). It follows from \(F_1(k, l) = 0, k, l > 0\), that

\[l = l(k) \quad \text{for all } k \in \left(0, \mu_1^{-\frac{p^*}{p}}\right)\).

Substituting this into \(F_2(k, l) = 0\), we have

\[
\mu_2 \left(\frac{p^*}{\alpha y}\right)^{\frac{\beta}{p}} \left(1 - \mu_1 k^{\frac{p^* - p}{p}}\right)^{\frac{\beta}{p}} + \frac{\beta y}{p^*} k^{\frac{p^* - p}{p}} l^\beta - \left(\frac{p^*}{\alpha y}\right)^{\frac{\beta}{p}} k^{\frac{p^* - p}{p}} \left(1 - \mu_1 k^{\frac{p^* - p}{p}}\right)^{\frac{\beta}{p}} = 0.
\]

By setting

\[f(k) := \mu_2 \left(\frac{p^*}{\alpha y}\right)^{\frac{\beta}{p}} \left(1 - \mu_1 k^{\frac{p^* - p}{p}}\right)^{\frac{\beta}{p}} + \frac{\beta y}{p^*} k^{\frac{p^* - p}{p}} l^\beta - \left(\frac{p^*}{\alpha y}\right)^{\frac{\beta}{p}} k^{\frac{p^* - p}{p}} \left(1 - \mu_1 k^{\frac{p^* - p}{p}}\right)^{\frac{\beta}{p}},\]

the existence of a solution of (3.6) in \((0, \mu_1^{-\frac{p^*}{p}}(p^* - p))\) is equivalent to \(f(k) = 0\) possessing a solution in \((0, \mu_1^{-\frac{p^*}{p}(p^* - p)})\). Since \(\alpha, \beta < p\), we get that

\[
\lim_{k \to 0^+} f(k) = -\infty, \quad f\left(\mu_1^{-\frac{p^*}{p}}\right) = \frac{\beta y}{p^*} \mu_1^{-\frac{\beta}{p}} > 0,
\]

which implies that there exists \(k_0 \in (0, \mu_1^{-\frac{p^*}{p}(p^* - p)})\) such that \(f(k_0) = 0\) and \(f(k) < 0\) for \(k \in (0, k_0)\). Let \(l_0 = l(k_0)\). Then \((k_0, l_0)\) is a solution of (3.3) and (3.4) holds.

Remark 3.2. From \(\frac{2N}{N+2} < p < \frac{N}{2}\) and \(\alpha, \beta < p\) we get that \(2 < p^* < 2p\). It can be seen from \(\frac{N}{2} < p < N\) and \(\alpha, \beta > p\) that \(2 < 2p < p^*\).

Lemma 3.3. Assume that \(\frac{2N}{N+2} < p < \frac{N}{2}, \alpha, \beta < p\) and (1.8) holds. Let \((k_0, l_0)\) be the same as in Lemma 3.2. Then

\[
(k_0 + l_0)^{\frac{p^* - p}{p}} \max\{\mu_1, \mu_2\} < 1
\]

and

\[
F_2(k, l(k)) < 0 \quad \text{for all } k \in (0, k_0), \quad F_2(k(l), l) < 0 \quad \text{for all } l \in (0, l_0).
\]
Proof. Recalling (3.2), we obtain that
\[
l'(k) = \left(\frac{p^*}{\alpha y}\right)^\frac{p}{p^*} P_{\frac{p^*}{p}}(k^{\frac{p-\alpha}{p}} - \mu_1 k^\beta)^{\frac{p^*}{p}} \left(\frac{P - \alpha}{p} k^{\frac{1}{p^*} - \frac{1}{p}} - \frac{\mu_1^*}{p} k^{\frac{1}{p^*} - \frac{1}{p}}\right) = \left(\frac{p^* \mu_1}{\alpha y}\right)^\frac{p}{p^*} k^{\frac{p-\alpha}{p}} \left(\mu_1 - k^{\frac{p-\alpha}{p}}\right) \left(\frac{P - \alpha}{p} k^{\frac{1}{p^*} - \frac{1}{p}} - \frac{\mu_1^*}{p} k^{\frac{1}{p^*} - \frac{1}{p}}\right),
\]
\[
l''(k) = \left(\frac{P - \alpha}{\mu_1^*}\right)^\frac{p}{p^*} = l'(k) = 0,
\]
\[
l'(k) > 0 \quad \text{for} \quad k \in \left(0, \left(\frac{P - \alpha}{\mu_1^*}\right)^\frac{p}{p^*}\right),
\]
\[
l'(k) < 0 \quad \text{for} \quad k \in \left(\left(\frac{P - \alpha}{\mu_1^*}\right)^\frac{p}{p^*}, \mu_1^{p/(p^* - p)}\right).
\]
From
\[
l''(\tilde{k}) = \frac{P - \alpha}{\mu_1^*} \left(\frac{P - \alpha}{\mu_1^*}\right)^\frac{p}{p^*} \left(\mu_1^{1 - \frac{p-\alpha}{p}} - \tilde{k}^{\frac{p-\alpha}{p}}\right)^\frac{p}{p^*} \left[\left(\frac{P - \alpha}{\mu_1^*} - \tilde{k}^{\frac{p-\alpha}{p}}\right)^2 - \left(\mu_1^{1 - \frac{p-\alpha}{p}} - \tilde{k}^{\frac{p-\alpha}{p}}\right)\left(\frac{\alpha(P - \alpha)}{\mu_1^* (\mu_1^* - \tilde{k}^{\frac{p-\alpha}{p}})}\right)\right] = 0
\]
and \(\tilde{k} \in ((\frac{P - \alpha}{\mu_1^*})^{p/(p^* - p)}, \mu_1^{p/(p^* - p)})\), we have \(\tilde{k} = (\frac{P - \alpha}{(2p - p^*)\mu_1^*})^{p/(p^* - p)}\). Then, by (1.8), we get that
\[
\min_{k \in (0, \mu_1^{p/(p^* - p)})} l''(k) = \min_{k \in (\frac{P - \alpha}{(2p - p^*)\mu_1^*})^{p/(p^* - p)}} l'(k) = l'(\tilde{k}) = -\left(\frac{p^*(p^* - p)\mu_1}{\alpha y}\right)^\frac{p}{p^*} \left(\frac{P - \alpha}{p - \alpha}\right)^\frac{p}{p^*} \geq -1.
\]
Therefore, \(l'(k) > -1\) for \(k \in (0, \mu_1^{p/(p^* - p)})\) with \(k \neq \left(\frac{P - \alpha}{(2p - p^*)\mu_1^*}\right)^{p/(p^* - p)}\), which implies that \(l(k) + k\) is strictly increasing on \([0, \mu_1^{p/(p^* - p)})\). Noticing that \(k_0 < \mu_1^{p/(p^* - p)}\), we have
\[
\mu_1^{p/(p^* - p)} = l\left(\mu_1^{p/(p^* - p)}\right) + \mu_1^{p/(p^* - p)} > l(k_0) + k_0 = l_0 + k_0,
\]
that is, \(\mu_1(k_0 + l_0)^{p/(p^* - p)} < 1\). Similarly, \(\mu_2(k_0 + l_0)^{p/(p^* - p)} < 1\). To prove (3.7), by Lemma 3.2 it suffices to show that \((k_0, l_0) = (k_1, l_1)\). It follows from (3.4) and (3.5) that \(k_1 \geq k_0\) and \(l_0 \geq l_1\). Suppose by contradiction that \(k_1 > k_0\). Then \(l(k_1) + k_1 > l(k_0) + k_0\). Hence, \(l_1 + k(l_1) = l(k_1) + k_1 > l(k_0) + k_0 = l_0 + k(l_0)\). Following the arguments as in the beginning of the current proof, we have that \(l + k(l)\) is strictly increasing for \(l \in [0, \mu_2^{p/(p^* - p)})\). Therefore, \(l_1 > l_0\), which contradicts \(l_0 \geq l_1\). Then \(k_1 = k_0\), and similarly \(l_0 = l_1\). \(\square\)

Remark 3.3. For any \(y > 0\), condition (1.8) always holds for dimension \(N\) large enough.

Proposition 3.4. Assume that \(\frac{2N}{p + 2} < p < \frac{N}{2}, \alpha, \beta < p\) and (1.8) holds. Then
\[
\begin{cases}
 k + l \leq k_0 + l_0, \\
 F_1(k, l) \geq 0, \\
 F_2(k, l) \geq 0, \\
 k, l \geq 0, \\
 (k, l) \neq (0, 0),
\end{cases}
\]
has a unique solution \((k, l) = (k_0, l_0)\).

Proof. Obviously, \((k_0, l_0)\) satisfies (3.8). Suppose that \((k, l)\) is any solution of (3.8) and, without loss of generality, assume that \(k > 0\). We claim that \(l > 0\). In fact, if \(l = 0\), then \(k \leq k_0 + l_0\) and \(F_1(k, 0) = \mu_1 k^{p/(p^* - p)} - 1 \geq 0\). Thus,
\[
1 \leq \mu_1 k^{p/(p^* - p)} \leq \mu_1 (k_0 + l_0)^{p/(p^* - p)},
\]
a contradiction to Lemma 3.3.
Suppose by contradiction that \(k < k_0 \). It can be seen that \(k(l) \) is strictly increasing on \((0, \frac{p - \beta}{p} \mu_1 \alpha^{p/(p - \beta)}) \) and strictly decreasing on
\[
\left[\left(\frac{2 - \beta}{\mu_2 \alpha} \right)^{\frac{\beta}{p(\beta - 1)}}, \mu_2 \right]
\]
and \(k(0) = k \left(\mu_2 \right) = 0 \).

Since \(0 < \hat{k} < k_0 = k(l_0) \), there exist \(0 < l_1 < l_2 < \mu_2 \frac{p}{\beta - 1} \) such that \(k(l_1) = k(l_2) = \hat{k} \) and
\[
F_2(\hat{k}, l) < 0 \iff \hat{k} < k(l) \iff l < l_1 < l < l_2.
\]
It follows from \(F_1(\hat{k}, l) \geq 0 \) and \(F_2(\hat{k}, l) \geq 0 \) that \(\hat{l} \geq k(\hat{k}) \) and \(\hat{l} \leq l_1 \) or \(\hat{l} \geq l_2 \). By (3.7), we see \(F_2(\hat{k}, l) < 0 \). By (3.9), we get that \(l_1 < l(\hat{k}) < l_2 \). Therefore, \(\hat{l} \geq l_2 \).

On the other hand, set \(l_3 := k_0 + l_0 - \hat{k} \). Then \(l_3 > l_0 \) and, moreover,
\[
k(l_3) + k_0 + l_0 - \hat{k} = k(l_3) + l_3 > k(l_0) + l_0 = k_0 + l_0,
\]
that is, \(k(l_3) > \hat{k} \). By (3.9), we have \(l_1 < l_3 < l_2 \). Since \(\hat{k} + l_3 < k_0 + l_0 \), we obtain that \(\hat{l} \leq k_0 + l_0 - \hat{k} = l_3 < l_2 \). This contradicts \(\hat{l} \geq l_2 \).

Proof of Theorem 1.2. Recalling (1.4) and (1.6), we see that \((\sqrt[N]{k_0} U_{e,y}, \sqrt[N]{l_0} U_{e,y}) \in N \) is a nontrivial solution of (1.1), and
\[
A \leq \int \left(\sqrt[N]{k_0} U_{e,y}, \sqrt[N]{l_0} U_{e,y} \right) = \frac{1}{N}(k_0 + l_0)S_{\frac{\beta}{p}}^N.
\]

Let \(\{(u_n, v_n) \} \subset N \) be a minimizing sequence for \(A \), i.e., \(I(u_n, v_n) \to A \) as \(n \to \infty \). Define
\[
c_n = \left(\int_{\mathbb{R}^N} |u_n|^p \ dx \right)^{\frac{1}{p}} \quad \text{and} \quad d_n = \left(\int_{\mathbb{R}^N} |v_n|^p \ dx \right)^{\frac{1}{p}}.
\]

Then,
\[
S c_n \leq \int_{\mathbb{R}^N} |\nabla u_n|^p \ dx = \int_{\mathbb{R}^N} \left(\mu_1 |u_n|^p + \frac{\alpha y}{p^*} |u_n|^\alpha |v_n|^\beta \right) \ dx
\]
\[
\leq \mu_1 c_n^\frac{\alpha}{p^*} + \frac{\alpha y}{p^*} c_n^\frac{\alpha}{p^*} d_n^\beta,
\]
\[
(3.11)
\]
\[
S d_n \leq \int_{\mathbb{R}^N} |\nabla v_n|^p \ dx = \int_{\mathbb{R}^N} \left(\mu_2 |v_n|^p + \frac{\beta y}{p^*} |u_n|^\alpha |v_n|^\beta \right) \ dx
\]
\[
\leq \mu_2 d_n^\frac{\alpha}{p^*} + \frac{\beta y}{p^*} c_n^\frac{\alpha}{p^*} d_n^\beta.
\]
\[
(3.12)
\]
Dividing both sides of these inequalities by \(S c_n \) and \(S d_n \), respectively, and denoting
\[
c_n = \frac{c_n}{S_{\frac{\beta}{p}}}, \quad d_n = \frac{d_n}{S_{\frac{\beta}{p}}},
\]
we deduce that
\[
\mu_1 c_n^\frac{\alpha}{p^*} + \frac{\alpha y}{p^*} c_n^\frac{\alpha}{p^*} d_n^\beta \geq 1, \quad \mu_2 d_n^\beta + \frac{\beta y}{p^*} c_n^\frac{\alpha}{p^*} d_n^\beta \geq 1,
\]
that is, \(F_1(c_n, d_n) \geq 0 \) and \(F_2(c_n, d_n) \geq 0 \). Then, for \(\frac{N}{2} < p < N \) and \(\alpha, \beta > p \), Proposition 3.1 and Remark 3.1 ensure that \(\tilde{c}_n + \tilde{d}_n \geq k + l = k_0 + l_0 \), whereas for \(\frac{N}{2} < p < \frac{N}{2} \) and \(\alpha, \beta < p \) Proposition 3.4 guarantees that \(\tilde{c}_n + \tilde{d}_n \geq k_0 + l_0 \). Therefore,
\[
c_n + d_n \geq (k_0 + l_0)S_{\frac{\beta}{p}} \geq (k_0 + l_0)S_{\frac{\beta}{p}}.
\]

Noticing that \(I(u_n, v_n) = \frac{1}{p} \int_{\mathbb{R}^N} (|\nabla u_n|^p + |\nabla v_n|^p) \), by (3.10)–(3.12) we have
\[
S(c_n + d_n) \leq NI(u_n, v_n) = NA + o(1) \leq (k_0 + l_0)S_{\frac{\beta}{p}} N + o(1).
\]
Combining this with (3.13), we get that \(c_n + d_n \to (k_0 + l_0)S_{\frac{\beta}{p}} \) as \(n \to \infty \). Thus,
\[
A = \lim_{n \to \infty} I(u_n, v_n) \geq \lim_{n \to \infty} \frac{1}{N} S(c_n + d_n) = \frac{1}{N}(k_0 + l_0)S_{\frac{\beta}{p}}.
\]
Hence,
\[
A = \frac{1}{N}(k_0 + l_0)S_{\frac{\beta}{p}} = I\left(\sqrt[N]{k_0} U_{e,y}, \sqrt[N]{l_0} U_{e,y} \right).
\]
\(\square \)
4 Proofs of Theorems 1.3 and 1.4

For (H1) holding and \(y > 0 \), define
\[
A' := \inf_{(u, v) \in N'} I(u, v),
\]
where
\[
N' := \left\{ (u, v) \in D \setminus \{(0, 0)\} : \int_{\mathbb{R}^d} (|\nabla u|^p + |\nabla v|^p) = \int_{\mathbb{R}^d} (\mu_1 |u|^{p^r} + \mu_2 |v|^{p^r} + \gamma |u|^\alpha |v|^\beta) \right\}.
\]
It follows from \(N \subseteq N' \) that \(A' \leq A \). By the Sobolev inequality, we see that \(A' > 0 \). Consider
\[
\begin{cases}
-\Delta_p u = \mu_1 |u|^{p^r - 2} u + \frac{\alpha y}{p^r} |u|^{a - 2} u |v|^\beta, & x \in B(0, R), \\
-\Delta_p v = \mu_2 |v|^{p^r - 2} v + \frac{\beta y}{p^r} |u|^\alpha |v|^{\beta - 2} v, & x \in B(0, R),
\end{cases}
\]
\[u, v \in H^1_{0}(B(0, R)),\]
where \(B(0, R) := \{ x \in \mathbb{R}^n : |x| < R \} \). Define
\[
N'(R) := \left\{ (u, v) \in H(0, R) \setminus \{(0, 0)\} : \int_{B(0, R)} (|\nabla u|^p + |\nabla v|^p) = \int_{B(0, R)} (\mu_1 |u|^{p^r} + \mu_2 |v|^{p^r} + \gamma |u|^\alpha |v|^\beta) \right\}
\]
and
\[
A'(R) := \inf_{(u, v) \in N'(R)} I(u, v),
\]
where \(H(0, R) := H^1_{0}(B(0, R)) \times H^1_{0}(B(0, R)) \). For \(\varepsilon \in (0, \min\{\alpha, \beta\} - 1) \), consider
\[
\begin{cases}
-\Delta_p u = \mu_1 |u|^{p^r - 2 - 2\varepsilon} u + \frac{(\alpha - \varepsilon) y}{p^r - 2\varepsilon} |u|^{a - 2 - \varepsilon} u |v|^\beta, & x \in B(0, 1), \\
-\Delta_p v = \mu_2 |v|^{p^r - 2 - 2\varepsilon} v + \frac{(\beta - \varepsilon) y}{p^r - 2\varepsilon} |u|^\alpha |v|^{\beta - 2 - \varepsilon} v, & x \in B(0, 1),
\end{cases}
\]
\[u, v \in H^1_{0}(B(0, 1)).\]
Define
\[
N_{\varepsilon} := \left\{ (u, v) \in H(0, 1) \setminus \{(0, 0)\} : G_{\varepsilon}(u, v) := \int_{B(0, 1)} (|\nabla u|^p + |\nabla v|^p) \right\}
\]
\[\begin{align*}
&\quad - \int_{B(0, 1)} (\mu_1 |u|^{p^r - 2 - 2\varepsilon} u + \mu_2 |v|^{p^r - 2 - 2\varepsilon} v + \gamma |u|^\alpha |v|^\beta = 0
\end{align*}\]
and
\[
A_{\varepsilon} := \inf_{(u, v) \in N_{\varepsilon}} I_{\varepsilon}(u, v).
\]

Lemma 4.1. Assume that \(\frac{2N}{N^*} < p < \frac{N}{2}, \alpha, \beta < p \). For \(\varepsilon \in (0, \min\{\alpha, \beta\} - 1) \), there holds
\[
A_{\varepsilon} < \min\left\{ \inf_{(u, 0) \in N_{\varepsilon}} I_{\varepsilon}(u, 0), \inf_{(0, v) \in N_{\varepsilon}} I_{\varepsilon}(0, v) \right\}.
\]

Proof. From \(\min\{\alpha, \beta\} \leq \frac{p^* - 2\varepsilon}{2} \) it is easy to see that \(2 < p^* - 2\varepsilon < p^* \). Then we may assume that \(u_i \) is a least energy solution of
\[
-\Delta_p u_i = \mu_i |u_i|^{p^r - 2 - 2\varepsilon} u_i, \quad u_i \in H^1_{0}(B(0, 1)), i = 1, 2.
\]
Therefore,
\[
I_{\varepsilon}(u_1, 0) = a_1 := \inf_{(u, 0) \in N_{\varepsilon}} I_{\varepsilon}(u, 0), \quad I_{\varepsilon}(0, u_2) = a_2 := \inf_{(0, v) \in N_{\varepsilon}} I_{\varepsilon}(0, v).
\]
We claim that, for any \(s \in \mathbb{R} \), there exists a unique \(t(s) > 0 \) such that \((\sqrt[\alpha]{t(s)}u_1, \sqrt[\beta]{t(s)}u_2) \in N_s^\varepsilon \). In fact,

\[
t(s)^{p - \frac{2s}{\alpha}} = \frac{\int_{\mathbb{R}^n}(|\nabla u_1|^p + |s| |\nabla u_2|^p)}{\int_{\mathbb{R}^n}(|u_1|^{p_{\alpha - 2\alpha}} + |s| |u_2|^{p_{\beta - 2\beta}})} = \frac{q a_1 + q a_2 |s|^p}{q a_1 + q a_2 |s|^p} = q a_1 + q a_2 |s|^p,
\]

where \(q := \frac{p_{\alpha - 2\alpha}}{p - \frac{2s}{\alpha}} = \frac{p_{\beta - 2\beta}}{p - \frac{2s}{\beta}} \rightarrow N \) as \(\varepsilon \rightarrow 0 \). Noticing that \(t(0) = 1 \), we have

\[
\lim_{s \rightarrow 0} t'(s) = \frac{\beta - \varepsilon}{s} |u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon} (1 + o(1)) \quad \text{as} \quad s \rightarrow 0.
\]

Then

\[
t(s) = 1 - \frac{\int_{\mathbb{R}^n}(|u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon})}{(p - 2\varepsilon) a_1} |s|^{\beta - \varepsilon} (1 + o(1)) \quad \text{as} \quad s \rightarrow 0,
\]

and so,

\[
t(s)^{p - \frac{2s}{\alpha}} = 1 - \frac{\int_{\mathbb{R}^n}(|u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon})}{(p - 2\varepsilon) a_1} |s|^{\beta - \varepsilon} (1 + o(1)) \quad \text{as} \quad s \rightarrow 0.
\]

Since \(\frac{1}{p} - \frac{1}{q} = \frac{p - \frac{2s}{\alpha}}{p - \frac{2s}{\beta}} \), we have

\[
A_s \leq I_{\frac{1}{p}}(\sqrt[\alpha]{t(s)}u_1, \sqrt[\beta]{t(s)}u_2) = \left(1 - \frac{1}{p - \frac{2s}{\alpha}} \right) \int_{\mathbb{R}^n}(q a_1 + q a_2 |s|^p + |s|^{\beta - \varepsilon}) \int_{\mathbb{R}^n}(|u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon}) t^{p - \frac{2s}{\alpha}}
\]

\[
= a_1 - \left(1 - \frac{1}{p - \frac{2s}{\alpha}} \right) |s|^{\beta - \varepsilon} \int_{\mathbb{R}^n}(|u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon} + o(|s|^{\beta - \varepsilon})
\]

\[
< a_1 = \inf_{(u, v) \in N_s^\varepsilon} I_{\frac{1}{p}}(0, v) \quad \text{as} \quad |s| \text{ is small enough}.
\]

Similarly, \(A_s < \inf_{(u, v) \in N_s^\varepsilon} I_{\frac{1}{p}}(0, v) \).

Noticing the definition of \(\omega_{\mu} \) in the proof of Theorem 1.1, similarly to Lemma 4.1, we obtain that

\[
A' = \inf_{(u, v) \in N_s^\varepsilon} I_{\frac{1}{p}}(0, v)
\]

\[
= \min\left\{ \frac{1}{N} - \frac{s}{\alpha}, \frac{1}{N} - \frac{s}{\beta} \right\}.
\]

(4.4)

Proposition 4.2. For any \(\varepsilon \in (0, \min(a, \beta) - 1) \), system (4.2) has a classical positive least energy solution \((u_\varepsilon, v_\varepsilon) \) and \(u_\varepsilon, v_\varepsilon \) are radially symmetric decreasing.

Proof. It is standard to see that \(A_\varepsilon > 0 \). For \((u, v) \in N_s^\varepsilon \) with \(u \geq 0 \) and \(v \geq 0 \), we denote by \((u^*, v^*)\) its Schwartz symmetrization. By the properties of the Schwartz symmetrization and \(\gamma > 0 \), we get that

\[
\int_{\mathbb{R}^n}(\mu_1 |u|^p + |\nabla v|^p) \leq \int_{\mathbb{R}^n}(\mu_1 |u^*|^p + |\nabla v^*|^p + \gamma |u^*|^{\alpha - \varepsilon} |v^*|^{\beta - \varepsilon}).
\]
Obviously, there exists \(t^* \in (0, 1) \) such that \((\frac{\sqrt{p}}{2}\mathbf{u}_t^*, \sqrt{p}v_t^*) \in N'_{\epsilon} \). Therefore,

\[
I_\epsilon(\frac{\sqrt{p}}{2}\mathbf{u}_t^*, \sqrt{p}v_t^*) = \left(\frac{1}{p} - \frac{1}{p^* - 2\epsilon} \right)t^* \int_{B(0,1)} (|\nabla \mathbf{u}_t^*|^p + |\nabla v_t^*|^p)
\leq \frac{p^* - 2\epsilon - p}{p(p^* - 2\epsilon)} \int_{B(0,1)} (|\nabla \mathbf{u}_t|^p + |\nabla v_t|^p)
= I_\epsilon(u, v),
\]

(4.5)

Therefore, we may choose a minimizing sequence \((u_n, v_n) \in N'_{\epsilon} \) of \(A_\epsilon \) such that \((u_n, v_n) = (u_n^*, v_n^*)\) and \(I_\epsilon(u_n, v_n) \rightarrow A_\epsilon \) as \(n \rightarrow \infty \). By (4.5), we see that \(u_n, v_n \) are uniformly bounded in \(H_0^1(B(0,1)) \). Passing to a subsequence, we may assume that \(u_n \rightarrow u_\epsilon, v_n \rightarrow v_\epsilon \) weakly in \(H_0^1(B(0,1)) \). Since \(H_0^1(B(0,1)) \hookrightarrow L^{p^* - 2\epsilon}(B(0,1)) \) is compact, we deduce that

\[
\int_{B(0,1)} (\mu_1|u_\epsilon|^{p^* - 2\epsilon} + \mu_2|v_\epsilon|^{p^* - 2\epsilon} + \gamma|u_\epsilon|^\alpha|v_\epsilon|^{\beta - \epsilon}) \leq \lim_{n \rightarrow \infty} \int_{B(0,1)} (\mu_1|u_n|^{p^* - 2\epsilon} + \mu_2|v_n|^{p^* - 2\epsilon} + \gamma|u_n|^\alpha|v_n|^{\beta - \epsilon})
= \frac{p(p^* - 2\epsilon)}{p^* - 2\epsilon - p} \lim_{n \rightarrow \infty} I_\epsilon(u_n, v_n)
= \frac{p(p^* - 2\epsilon)}{p^* - 2\epsilon - p} A_\epsilon > 0,
\]

which implies that \((u_\epsilon, v_\epsilon) \neq (0, 0)\). Moreover, \(u_\epsilon \geq 0, \alpha \geq 0 \) are radially symmetric. Noticing that

\[
\int_{B(0,1)} (|\nabla u_\epsilon|^p + |\nabla v_\epsilon|^p) \leq \lim_{n \rightarrow \infty} \int_{B(0,1)} (|\nabla u_n|^p + |\nabla v_n|^p),
\]

we get that

\[
\int_{B(0,1)} (|\nabla u_\epsilon|^p + |\nabla v_\epsilon|^p) \leq \int_{B(0,1)} (\mu_1|u_\epsilon|^{p^* - 2\epsilon} + \mu_2|v_\epsilon|^{p^* - 2\epsilon} + \gamma|u_\epsilon|^\alpha|v_\epsilon|^{\beta - \epsilon}).
\]

Then there exists \(t_\epsilon \in (0, 1) \) such that \((\frac{\sqrt{p}}{2}\mathbf{u}_{t_\epsilon}, \sqrt{p}v_{t_\epsilon}) \in N'_{\epsilon} \), and therefore

\[
A_\epsilon \leq I_\epsilon(\frac{\sqrt{p}}{2}\mathbf{u}_{t_\epsilon}, \sqrt{p}v_{t_\epsilon})
= \left(\frac{1}{p} - \frac{1}{p^* - 2\epsilon} \right)t_\epsilon \int_{B(0,1)} (|\nabla \mathbf{u}_{t_\epsilon}|^p + |\nabla v_{t_\epsilon}|^p)
\leq \lim_{n \rightarrow \infty} \frac{p^* - 2\epsilon - p}{p(p^* - 2\epsilon)} \int_{B(0,1)} (|\nabla u_n|^p + |\nabla v_n|^p)
= \lim_{n \rightarrow \infty} I_\epsilon(u_n, v_n) = A_\epsilon,
\]

which yields that \(t_\epsilon = 1, (u_\epsilon, v_\epsilon) \in N'_{\epsilon}, I(u_\epsilon, v_\epsilon) = A_\epsilon \) and

\[
\int_{B(0,1)} (|\nabla u_\epsilon|^p + |\nabla v_\epsilon|^p) = \lim_{n \rightarrow \infty} \int_{B(0,1)} (|\nabla u_n|^p + |\nabla v_n|^p).
\]

That is, \(u_n \rightarrow u_\epsilon, v_n \rightarrow v_\epsilon \) strongly in \(H_0^1(B(0,1)) \). It follows from the standard minimization theory that there exists a Lagrange multiplier \(L \in \mathbb{R} \) satisfying

\[
I_\epsilon'(u_\epsilon, v_\epsilon) + LG_\epsilon'(u_\epsilon, v_\epsilon) = 0.
\]

Since \(I_\epsilon'(u_\epsilon, v_\epsilon)(u_\epsilon, v_\epsilon) = G_\epsilon(u_\epsilon, v_\epsilon) = 0 \) and

\[
G_\epsilon'(u_\epsilon, v_\epsilon)(u_\epsilon, v_\epsilon) = -(p^* - 2\epsilon - p) \int_{B(0,1)} (\mu_1|u_\epsilon|^{p^* - 2\epsilon} + \mu_2|v_\epsilon|^{p^* - 2\epsilon} + \gamma|u_\epsilon|^\alpha|v_\epsilon|^{\beta - \epsilon}) < 0,
\]

we get that \(L = 0 \), and so \(I_\epsilon'(u_\epsilon, v_\epsilon) = 0 \). By \(A_\epsilon = I(u_\epsilon, v_\epsilon) \) and Lemma 4.1, we have \(u_\epsilon \neq 0 \) and \(v_\epsilon \neq 0 \). Since \(u_\epsilon, v_\epsilon \geq 0 \) are radially symmetric decreasing, by the regularity theory and the maximum principle, we obtain that \((u_\epsilon, v_\epsilon)\) is a classical positive least energy solution of (4.2). \(\square \).
Proof of Theorem 1.3. We claim that

$$A'(R) = A' \quad \text{for all } R > 0. \quad (4.6)$$

Indeed, assume $$R_1 < R_2$$. Since $$N'(R_1) \subset N'(R_2)$$, we get that $$A'(R_2) \leq A'(R_1)$$. On the other hand, for every $$(u, v) \in N'(R_2)$$, define

$$(u_1(x), v_1(x)) := \left(\left(\frac{R_2}{R_1}\right)^{\frac{n-p}{p}} u\left(\frac{R_2}{R_1} x\right), \left(\frac{R_2}{R_1}\right)^{\frac{n-p}{p}} v\left(\frac{R_2}{R_1} x\right)\right).$$

Then it is easy to see that $$(u_1, v_1) \in N'(R_1)$$. Thus, we have

$$A'(R_1) \leq I(u_1, v_1) = I(u, v) \quad \text{for all } (u, v) \in N'(R_2),$$

which means that $$A'(R_1) \leq A'(R_2)$$. Hence, $$A'(R_1) = A'(R_2)$$. Obviously, $$A' \leq A'(R)$$. Let $$(u_n, v_n) \in N'$$ be a minimizing sequence of $$A'$$. We assume that $$u_n, v_n \in H^1_0(B(0, R_n))$$ for some $$R_n > 0$$. Therefore, $$(u_n, v_n) \in N'(R_n)$$ and

$$A' = \lim_{n \to \infty} I(u_n, v_n) \geq \lim_{n \to \infty} A'(R_n) = A'(R),$$

which completes the proof of the claim.

By recalling (4.1) and (4.3), for every $$(u, v) \in N'(1)$$, there exists $$t_\varepsilon > 0$$ with $$t_\varepsilon \to 1$$ as $$\varepsilon \to 0$$ such that $$(\sqrt[\varepsilon]{t_\varepsilon u}, \sqrt[\varepsilon]{t_\varepsilon v}) \in N'_0$$. Then

$$\lim_{\varepsilon \to 0} \sup A_\varepsilon \leq \limsup_{\varepsilon \to 0} I_\varepsilon(\sqrt[\varepsilon]{t_\varepsilon u}, \sqrt[\varepsilon]{t_\varepsilon v}) = I(u, v) \quad \text{for all } (u, v) \in N'(1).$$

It follows from (4.6) that

$$\lim_{\varepsilon \to 0} \sup A_\varepsilon \leq A'(1) = A'. \quad (4.7)$$

According to Proposition 4.2, we may let $$(u_\varepsilon, v_\varepsilon)$$ be a positive least energy solution of (4.2), which is radially symmetric decreasing. By (4.3) and the Sobolev inequality, we have

$$A_\varepsilon = \frac{p^* - 2\varepsilon - 2}{2(p^* - 2\varepsilon)} \int_{B(0, 1)} (|\nabla u_\varepsilon|^p + |\nabla v_\varepsilon|^p) \geq C > 0 \quad \text{for all } \varepsilon \in \left(0, \frac{\min[a, \beta] - 1}{2}\right), \quad (4.8)$$

where $$C$$ is independent of $$\varepsilon$$. Then it follows from (4.7) that $$u_\varepsilon, v_\varepsilon$$ are uniformly bounded in $$H^1_0(B(0, 1))$$. We may assume that $$u_\varepsilon \rightharpoonup u_0, v_\varepsilon \rightharpoonup v_0$$, up to a subsequence, weakly in $$H^1_0(B(0, 1))$$. Hence, $$(u_0, v_0)$$ is a solution of

$$
\begin{cases}
-\Delta_p u = |u|^{p^*-2} u + \frac{a\gamma}{p^*} |u|^{a-2} |u|^\beta, & x \in B(0, 1), \\
-\Delta_p v = |v|^{p^*-2} v + \frac{\beta\gamma}{p^*} |v|^{\beta-2} v, & x \in B(0, 1), \\
u, v \in H^1_0(B(0, 1)).
\end{cases}
$$

Suppose by contradiction that $$\|u_\varepsilon\|_\infty + \|v_\varepsilon\|_\infty$$ is uniformly bounded. Then, by the dominated convergent theorem, we get that

$$\lim_{\varepsilon \to 0} \int_{B(0, 1)} u_\varepsilon^{p^*-2} = \int_{B(0, 1)} u_0^{p^*}, \quad \lim_{\varepsilon \to 0} \int_{B(0, 1)} v_\varepsilon^{p^*-2} = \int_{B(0, 1)} v_0^{p^*}, \quad \lim_{\varepsilon \to 0} \int_{B(0, 1)} u_\varepsilon^{p^*-2} v_\varepsilon^\beta = \int_{B(0, 1)} u_0^{p^*} v_0^\beta.$$

Combining these with $$I'_e(u_\varepsilon, v_\varepsilon) = I'(u_0, v_0)$$, similarly to the proof of Proposition 4.2, we see that $$u_\varepsilon \rightharpoonup u_0, v_\varepsilon \rightharpoonup v_0$$ strongly in $$H^1_0(B(0, 1))$$. It follows from (4.8) that $$(u_0, v_0) \neq (0, 0)$$ and, moreover, $$u_0 \geq 0, v_0 \geq 0$$. Without loss of generality, we may assume that $$u_0 \neq 0$$. By the strong maximum principle, we obtain that $$u_0 > 0$$ in $$B(0, 1)$$. By the Pohozaev identity, we have a contradiction

$$0 < \int_{\partial B(0, 1)} (|\nabla u_0|^p + |\nabla v_0|^p)(x \cdot v) d\sigma = 0,$$
where \(\nu \) is the outward unit normal vector on \(\partial \Omega(0, 1) \). Hence, \(\| u_\epsilon \|_\infty + \| \nu_\epsilon \|_\infty \to \infty \) as \(\epsilon \to 0 \). Let

\[
K_\epsilon := \max\{ u_\epsilon(0), \nu_\epsilon(0) \}.
\]

Since \(u_\epsilon(0) = \max_{B(0,1)} u_\epsilon(x) \) and \(\nu_\epsilon(0) = \max_{\partial B(0,1)} \nu_\epsilon(x) \), we see that \(K_\epsilon \to +\infty \) as \(\epsilon \to 0 \). Setting

\[
U_\epsilon(x) := K_\epsilon^{-1} u_\epsilon(K_\epsilon^{-1} x), \quad V_\epsilon(x) := K_\epsilon^{-1} \nu_\epsilon(K_\epsilon^{-1} x), \quad a_\epsilon := \frac{p^* - p - p^e}{p},
\]

we have

\[
\max\{ U_\epsilon(0), V_\epsilon(0) \} = \max\left\{ \max_{x \in B(0,K_\epsilon^\alpha)} U_\epsilon(x), \max_{x \in B(0,K_\epsilon^\alpha)} V_\epsilon(x) \right\} = 1, \quad (4.9)
\]

and \((U_\epsilon, V_\epsilon)\) is a solution of

\[
\begin{align*}
-\Delta_p U_\epsilon &= \mu_1 U_\epsilon^{p^*-2} + \frac{(\alpha - \epsilon)\nu}{p^* - 2\epsilon} U_\epsilon^{p^* - 2\epsilon}, & x &\in B(0,K_\epsilon^\alpha), \\
-\Delta_p V_\epsilon &= \mu_2 V_\epsilon^{p^*-2} + \frac{(\beta - \epsilon)\nu}{p^* - 2\epsilon} V_\epsilon^{p^* - 2\epsilon}, & x &\in B(0,K_\epsilon^\alpha)\
\end{align*}
\]

Since

\[
\int_{\mathbb{R}^N} |\nabla U_\epsilon(x)|^p \, dx = K_\epsilon^{(N-p)/p} \int_{\mathbb{R}^N} |\nabla u_\epsilon(y)|^p \, dy = K_\epsilon^{(N-p)/p} \int_{\mathbb{R}^N} |\nabla u_\epsilon(x)|^p \, dx \leq \int_{\mathbb{R}^N} |\nabla u_\epsilon(x)|^p \, dx,
\]

we see that \(\{(U_\epsilon, V_\epsilon)\}_{\epsilon \geq 1} \) is bounded in \(D \). By elliptic estimates, we get that, up to a subsequence,

\[
(U_\epsilon, V_\epsilon) \to (U, V) \in D
\]

uniformly in every compact subset of \(\mathbb{R}^N \) as \(\epsilon \to 0 \), and \((U, V)\) is a solution of (1.1), that is, \(I(U, V) = 0 \). Moreover, \(U \geq 0, V \geq 0 \) are radially symmetric decreasing. By (4.9), we have \((U, V) \neq (0, 0)\), and so \((U, V) \in \mathcal{N}'\). Thus,

\[
A' \leq I(U, V) = \frac{1}{p} \left(1 - \frac{1}{p} \right) \left(\| \nabla U \|^p + \| \nabla V \|^p \right) \, dx \leq \liminf_{\epsilon \to 0} \left(\frac{1}{p} - \frac{1}{p^*} \right) \int_{B(0,K_\epsilon^\alpha)} \| \nabla U_\epsilon \|^p + \| \nabla V_\epsilon \|^p \, dx = \liminf_{\epsilon \to 0} \left(\frac{1}{p} - \frac{1}{p^* - 2\epsilon} \right) \int_{B(0,K_\epsilon^\alpha)} \| \nabla U_\epsilon \|^p + \| \nabla V_\epsilon \|^p \, dx \leq \liminf_{\epsilon \to 0} \left(\frac{1}{p} - \frac{1}{p^* - 2\epsilon} \right) \int_{B(0,1)} \| \nabla u_\epsilon \|^p + \| \nabla \nu_\epsilon \|^p \, dx = \liminf_{\epsilon \to 0} A_\epsilon.
\]

It follows from (4.7) that \(A' \leq I(U, V) \leq \liminf_{\epsilon \to 0} A_\epsilon \leq A' \), which means that \(I(U, V) = A' \). By (4.4), we get that \(U \neq 0 \) and \(V \neq 0 \). The strong maximum principle guarantees that \(U > 0 \) and \(V > 0 \). Since \((U, V) \in \mathcal{N}\), we have \(I(U, V) \geq A \geq A' \). Therefore,

\[
I(U, V) = A = A', \quad (4.10)
\]

that is, \((U, V)\) is a positive least energy solution of (1.1) with (H1) holding, which is radially symmetric decreasing. This completes the proof. \(\square \)
Remark 4.1. If (H1) and (C2) hold, then it can be seen from Theorems 1.2 and 1.3 that \((\sqrt[k_0]{U_{x,y}}, \sqrt[l_0]{U_{x,y}}) \) is a positive least energy solution of (1.1), where \((k_0, l_0)\) is defined by (1.9) and \(U_{x,y}\) is defined by (1.4).

Proof of Theorem 1.4. To prove the existence of \(k(y), l(y)\) for \(y > 0\) small, recalling (3.2), we denote \(F_i(k, l, y)\) by \(F_i(k, l, i = 1, 2,\) in this proof. Let \(k(0) = \mu_1^{p/(p'-p)} \) and \(l(0) = \mu_2^{p/(p'-p)}\). Then

\[
F_1(k(0), l(0), 0) = F_2(k(0), l(0), 0) = 0.
\]

Obviously, we have

\[
\begin{align*}
\partial_k F_1(k(0), l(0), 0) &= \frac{p^* - p}{p} \mu_1 k^{\epsilon^* - k} > 0, \\
\partial_l F_1(k(0), l(0), 0) &= \partial_k F_2(k(0), l(0), 0) = 0, \\
\partial_l F_2(k(0), l(0), 0) &= \frac{p^* - p}{p} \mu_2 l^{\epsilon^* - l} > 0,
\end{align*}
\]

which implies that

\[
\det \begin{pmatrix}
\partial_k F_1(k(0), l(0), 0) & \partial_l F_1(k(0), l(0), 0) \\
\partial_k F_2(k(0), l(0), 0) & \partial_l F_2(k(0), l(0), 0)
\end{pmatrix} > 0.
\]

By the implicit function theorem, we see that \(k(y), l(y)\) are well defined and of class \(C^1\) in \((-\gamma_2, \gamma_2)\) for some \(\gamma_2 > 0\), and \(F_1(k(y), l(y), y) = F_2(k(y), l(y), y) = 0\). Then \(\sqrt[\gamma(y)]{U_{x,y}}, \sqrt[l(y)]{U_{x,y}}\) is a positive solution of (1.1). Noticing that

\[
\lim_{y \to 0} (k(y) + l(y)) = k(0) + l(0) = \mu_1^{\frac{\gamma}{\gamma'}} + \mu_2^{\frac{\gamma}{\gamma'}}
\]

we obtain that there exists \(y_1 \in (0, \gamma_2)\) such that

\[
k(y) + l(y) > \min \left\{ \mu_1^{\frac{\gamma}{\gamma'}}, \mu_2^{\frac{\gamma}{\gamma'}} \right\} \quad \text{for all } y \in (0, y_1).
\]

It follows from (4.4) and (4.10) that

\[
\begin{align*}
I &\left(\sqrt[\gamma(y)]{U_{x,y}}, \sqrt[l(y)]{U_{x,y}} \right) = \frac{1}{N}(k(y) + l(y)) S^\frac{\gamma}{\gamma'} \\
&> \min \left\{ \frac{1}{N} \mu_1^{\frac{\gamma}{\gamma'}} S^\frac{\gamma}{\gamma'}, \frac{1}{N} \mu_2^{\frac{\gamma}{\gamma'}} S^\frac{\gamma}{\gamma'} \right\} \\
&> A' = \lambda = I(U, V),
\end{align*}
\]

that is, when (H1) is satisfied, \(\sqrt[\gamma(y)]{U_{x,y}}, \sqrt[l(y)]{U_{x,y}}\) is a different positive solution of (1.1) with respect to \((U, V)\). \(\square\)

5 Proof of Theorem 1.5

In this section, we consider the case (H2).

Proposition 5.1. Let \(q, r > 1\) satisfy \(q + r \leq p^*\), and set

\[
S_{q,r}(\Omega) = \inf_{u, v \in W_{0}^{1,p}(\Omega) \setminus \{0\}} \\frac{\int_{\Omega} (|\nabla u|^p + |\nabla v|^p) \, dx}{(\int_{\Omega} |u|^q |v|^r \, dx)^{\frac{1}{qr}}},
\]

\[
S_{q+r}(\Omega) = \inf_{u \in W_{0}^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p \, dx}{(\int_{\Omega} |u|^{q+r} \, dx)^{\frac{1}{q+r}}}.
\]

Then

\[
S_{q,r}(\Omega) = \frac{q + r}{(q + r)^{\frac{1}{qr}}} S_{q+r}(\Omega). \tag{5.1}
\]

Moreover, if \(u_0\) is a minimizer for \(S_{q+r}(\Omega)\), then \((q/r) u_0, r^{1/p} u_0\) is a minimizer for \(S_{q,r}(\Omega)\).
Proof. For \(u \neq 0 \) in \(W^{1,p}_0(\Omega) \) and \(t > 0 \), taking \(v = t^{-1/p} u \) in the first quotient gives

\[
S_{q,r}(\Omega) \leq \left[t^{\frac{1}{q^*}} + t^{-\frac{q}{q^*}} \right] \frac{\int_\Omega |\nabla u|^p \, dx}{(\int_\Omega |u|^{q+r} \, dx)^{\frac{p}{pq^*}}},
\]

and minimizing the right-hand side over \(u \) and \(t \) shows that \(S_{q,r}(\Omega) \) is less than or equal to the right-hand side of (5.1). For \(u, v \neq 0 \) in \(W^{1,p}_0(\Omega) \), let \(w = t^{1/p} v \), where

\[
t^{\frac{1}{q^*}} = \frac{\int_\Omega |u|^{q+r} \, dx}{\int_\Omega |v|^{q+r} \, dx}.
\]

Then \(\int_\Omega |u|^{q+r} \, dx = \int_\Omega |w|^{q+r} \, dx \), and hence

\[
\int_\Omega |u|^q |v|^r \, dx \leq \int_\Omega |u|^{q+r} \, dx = \int_\Omega |w|^{q+r} \, dx
\]

by the Hölder inequality, so

\[
\int_\Omega (|\nabla u|^p + |\nabla v|^p) \, dx \leq \int_\Omega \left(t^{\frac{1}{q^*}} |\nabla u|^p + t^{-\frac{q}{q^*}} |\nabla v|^p \right) \, dx
\]

\[
\geq t^{\frac{1}{q^*}} \left(\frac{\int_\Omega |\nabla u|^p \, dx}{\int_\Omega |u|^{q+r} \, dx} \right)^{\frac{p}{pq^*}} \left(\frac{\int_\Omega |\nabla v|^p \, dx}{\int_\Omega |w|^{q+r} \, dx} \right)^{\frac{p}{pq^*}}
\]

\[
\geq \left[t^{\frac{1}{q^*}} + t^{-\frac{q}{q^*}} \right] S_{q,r}(\Omega).
\]

The last expression is greater than or equal to the right-hand side of (5.1), so minimizing over \((u, v)\) gives the reverse inequality. \(\Box \)

By Proposition 5.1,

\[
S_{a,b}(\Omega) = \frac{p}{(a^b b^a)^{\frac{a}{b}}} \lambda_1(\Omega), \quad S_{a,b} = \frac{p^*}{(a^b b^a)^{\frac{a}{b}}} S,
\]

where \(\lambda_1(\Omega) > 0 \) is the first Dirichlet eigenvalue of \(-\Delta_p \) in \(\Omega \). When (H2) is satisfied, we will obtain a nontrivial nonnegative solution of system (1.1) for \(\lambda < S_{a,b}(\Omega) \). Consider the \(C^1 \)-functional

\[
\Phi(w) = \frac{1}{p} \int_\Omega [|\nabla u|^p + |\nabla v|^p - \lambda(u^+)^a(v^+)^b] \, dx - \frac{1}{p^*} \int_\Omega (u^+)^a(v^+)^b \, dx, \quad w \in W,
\]

where \(W = D^{1,p}_0(\Omega) \times D^{1,p}_0(\Omega) \) with the norm given by \(\|w\|^p = |\nabla u|^p + |\nabla v|^p \) for \(w = (u, v) \), \(|\cdot|_p \) denotes the norm in \(L^p(\Omega) \) and \(u^\pm(x) = \max \{|u(x), 0| \} \) are the positive and negative parts of \(u \), respectively. If \(w \) is a critical point of \(\Phi \),

\[
0 = \Phi'(w)(u^-, v^-) = \int_\Omega [|\nabla u^-|^p + |\nabla v^-|^p] \, dx,
\]

and hence \((u^-, v^-) = 0 \), so \(w = (u^+, v^+) \) is a nonnegative weak solution of (1.1) with (H2) holding.

Proposition 5.2. If \(0 < c < S^N_{a,b} / N \) and \(\lambda < S_{a,b}(\Omega) \), then every \((PS)_c\) sequence of \(\Phi \) has a subsequence that converges weakly to a nontrivial critical point of \(\Phi \).

Proof. Let \(\{w_j\} \) be a \((PS)_c\) sequence. Then

\[
\Phi(w_j) = \frac{1}{p} \int_\Omega [|\nabla u_j|^p + |\nabla v_j|^p - \lambda(u_j^+)^a(v_j^+)^b] \, dx - \frac{1}{p^*} \int_\Omega (u_j^+)^a(v_j^+)^b \, dx
\]

\[
= c + o(1)
\]
and
\[
\Phi'(w_j)w_j = \int_{\Omega} \left[|\nabla u_j|^p + |\nabla v_j|^p - \lambda (u_j^p)^{a}(v_j^p)^{b} \right] dx - \int_{\Omega} (u_j^p)^{a}(v_j^p)^{b} dx \\
= o(\|w_j\|),
\]
(5.3)
so
\[
\frac{1}{N} \int_{\Omega} \left[|\nabla u_j|^p + |\nabla v_j|^p - \lambda (u_j^p)^{a}(v_j^p)^{b} \right] dx = c + o(\|w_j\| + 1).
\]
(5.4)

Since the integral on the left-hand side is greater than or equal to \((1 - \frac{1}{S_{a,b}(\Omega)})\|w_j\|^p\), \(\lambda < S_{a,b}(\Omega)\) and \(p > 1\), it follows that \(\{w_j\}\) is bounded in \(W\). So a renamed subsequence converges to some \(w\) weakly in \(W\), strongly in \(L^s(\Omega) \times L^t(\Omega)\) for all \(1 \leq s, t < p^*\) and a.e. in \(\Omega\). Then \(w_j \rightharpoonup w\) strongly in \(W^{1,q}(\Omega) \times W^{1,r}(\Omega)\) for all \(1 \leq q, r < p\) by Boccardo and Murat [6, Theorem 2.1], and hence \(\nabla w_j \rightharpoonup \nabla w\) a.e. in \(\Omega\) for a further subsequence. It then follows that \(w\) is a critical point of \(\Phi\).

Suppose \(w = 0\). Since \(\{w_j\}\) is bounded in \(W\) and converges to zero in \(L^p(\Omega) \times L^p(\Omega)\), equation (5.3) and the Hölder inequality give
\[
o(1) = \int_{\Omega} \left[|\nabla u_j|^p + |\nabla v_j|^p \right] dx - \int_{\Omega} (u_j^p)^{a}(v_j^p)^{b} dx \geq \|w_j\|^p \left(1 - \frac{\|w_j\|^{p-p^*}}{S_{a,b}^{\frac{p^*}{p}}} \right).
\]
If \(\|w_j\| \to 0\), then \(\Phi(w_j) \to 0\), contradicting \(c \neq 0\), so this implies
\[
\|w_j\|^p \geq S_{a,b}^{\frac{p^*}{p}} + o(1)
\]
for a renamed subsequence. Then (5.4) gives
\[
c = \frac{\|w_j\|^p}{N} + o(1) \geq \frac{S_{a,b}^{p^*}}{N} + o(1),
\]
contradicting \(c < S_{a,b}^{N/p} / N\).

Recall (1.4) and (1.5) and let \(\eta: [0, \infty) \to [0, 1]\) be a smooth cut-off function such that \(\eta(s) = 1\) for \(s \leq \frac{1}{a}\) and \(\eta(s) = 0\) for \(s \geq \frac{1}{2}\); set
\[
u_{\varepsilon, \rho}(x) = \eta\left(\frac{|x|}{\rho} \right) U_{\varepsilon, \rho}(x)
\]
for \(\rho > 0\). We have the following estimates for \(\nu_{\varepsilon, \rho}\) (see [15, Lemma 3.1]):
\[
\int_{\mathbb{R}^N} |\nabla \nu_{\varepsilon, \rho}|^p dx \leq S_{\frac{p}{p^*}}^N + C\left(\frac{\varepsilon}{\rho} \right)^{\frac{N}{p^*} - p},
\]
(5.5)
\[
\int_{\mathbb{R}^N} \nabla \nu_{\varepsilon, \rho}^p dx \geq \begin{cases} \frac{1}{C} \varepsilon^p \log\left(\frac{E}{\varepsilon} \right) - Ce^p & \text{if } N = p^2, \\
\frac{1}{C} \varepsilon^p - Cp^p \left(\frac{\varepsilon}{\rho} \right)^{\frac{N}{p^*}} & \text{if } N > p^2,
\end{cases}
\]
(5.6)
\[
\int_{\mathbb{R}^N} \nabla \nu_{\varepsilon, \rho}^p dx \geq S_{\frac{p}{p^*}}^N - C\left(\frac{\varepsilon}{\rho} \right)^{\frac{N}{p^*}},
\]
(5.7)
where \(C = C(N, p)\). We will make use of these estimates in the proof of our last theorem.

Proof of Theorem 1.5. In view of (5.2),
\[
\Phi(w) \geq \frac{1}{p} \left(1 - \frac{\lambda}{S_{a,b}(\Omega)} \right) \|w\|^p - \frac{1}{p^*} \|w\|^{p^*},
\]
(5.8)
so the origin is a strict local minimizer of Φ. We may assume without loss of generality that $0 \in \Omega$. Fix $\rho > 0$ so small that $\Omega \supset B_\rho(0) \supset \text{supp } u_{\epsilon, \rho}$, and let $w_\epsilon = (a^{1/p} u_{\epsilon, \rho}, \beta^{1/p} u_{\epsilon, \rho}) \in W$. Note that
\[
\Phi(Rw_\epsilon) = \frac{R^p}{p} \left(p^{*} |\nabla u_{\epsilon, \rho}|_{p}^{p} - \lambda a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}} |u_{\epsilon, \rho}|_{p}^{p} \right) - \frac{R^{p'}}{p'} a^{\frac{\alpha}{p'}} \beta^{\frac{\beta}{p'}} |u_{\epsilon, \rho}|_{p'}^{p'} \to -\infty
\]
as $R \to +\infty$ and fix $R_0 > 0$ so large that $\Phi(R_0 w_\epsilon) < 0$. Then let
\[
\Gamma = \{ y \in C([0, 1], W) : y(0) = 0, y(1) = R_0 w_\epsilon \}
\]
and set
\[
c := \inf_{y \in \Gamma} \max_{t \in [0, 1]} \Phi(y(t)) > 0.
\]
By the mountain pass theorem, Φ has a $(PS)_c$ sequence $\{w_j\}$.
Since $t \mapsto tR_0 w_\epsilon$ is a path in Γ,
\[
c \leq \max_{t \in [0, 1]} \Phi(tR_0 w_\epsilon) = \frac{1}{N} \left(\frac{p^{*} |\nabla u_{\epsilon, \rho}|_{p}^{p} - \lambda (a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}}) |u_{\epsilon, \rho}|_{p}^{p}}{(a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}})^{\frac{p}{p'}} |u_{\epsilon, \rho}|_{p'}^{p'}} \right)^{\frac{\frac{p}{p'}}{p}} = \frac{1}{N} S_{\epsilon}^{\frac{\frac{p}{p'}}{p}}. \tag{5.8}
\]
By (5.5)–(5.7),
\[
S_{\epsilon} \leq \frac{p^{*} S_{\frac{N}{p}} - \lambda (a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}}) \frac{p}{p'} \epsilon^{p} + O(\epsilon^{p})}{(a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}})^{\frac{\frac{p}{p'}}{p}} (S_{\frac{N}{p}} + O(\epsilon^{p}))^{\frac{\frac{p}{p'}}{p}}} = S_{a, \beta} - \left(\frac{\lambda a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}} - \frac{p}{p'} \epsilon^{p}}{CS_{\frac{N}{p}}^{\frac{\frac{p}{p'}}{p}} + O(\epsilon^{p})} \right) \epsilon^{p}
\]
if $N = p^2$, and
\[
S_{\epsilon} \leq \frac{p^{*} S_{\frac{N}{p}} - \lambda (a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}}) \frac{p}{p'} \epsilon^{p} + O(\epsilon^{p})}{(a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}})^{\frac{\frac{p}{p'}}{p}} (S_{\frac{N}{p}} + O(\epsilon^{p}))^{\frac{\frac{p}{p'}}{p}}} = S_{a, \beta} - \left(\frac{\lambda a^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}} - \frac{p}{p'} \epsilon^{p}}{CS_{\frac{N}{p}}^{\frac{\frac{p}{p'}}{p}} + O(\epsilon^{p})} \right) \epsilon^{p}
\]
if $N > p^2$, so $S_\epsilon < S_{a, \beta}$ if $\epsilon > 0$ is sufficiently small. So $c < S_{a, \beta}^{N/p}/N$ by (5.8), and hence a subsequence of $\{w_j\}$ converges weakly to a nontrivial critical point of Φ by Proposition 5.2, which then is a nontrivial nonnegative solution of (1.1) with (H2) holding.

\textbf{Funding:} The first and third authors acknowledge the support of the NSFC (grant nos. 11371212, 11271386).

\textbf{References}

