Sandwich pairs for \(p \)-Laplacian systems

Kanishka Perera\(^a\),* Martin Schechter\(^b\)

\(^a\) Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States
\(^b\) Department of Mathematics, University of California, Irvine, CA 92697, United States

A R T I C L E I N F O

Article history:
Received 16 February 2009
Available online 19 May 2009
Submitted by D. O’Regan

Keywords:
\(p \)-Laplacian systems
Boundary value problems
Nonlinear eigenvalues
Variational methods
Sandwich pairs

A B S T R A C T

We solve boundary value problems for \(p \)-Laplacian systems using sandwich pairs.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The notion of sandwich pairs introduced by Schechter [6] is a useful tool for finding critical points of a functional. Let \(W \) be a Banach space and \(\Phi \in C^1(W, \mathbb{R}) \). Recall that a sequence \((u^i) \subset W \) such that

\[
\Phi(u^i) \to c, \quad \Phi'(u^i) \to 0
\]

is called a Palais–Smale sequence for \(\Phi \) at the level \(c \), or a \((PS)_c\) sequence for short, and that \(\Phi \) satisfies the compactness condition \((PS)_c\) if every such sequence has a convergent subsequence.

Definition 1.1. We say that \(A, B \subset W \) form a sandwich pair if for any \(\Phi \in C^1(W, \mathbb{R}) \),

\[
-b := \inf_B \Phi \leq \sup_A \Phi =: a < +\infty
\]

implies that \(\Phi \) has a \((PS)_c\) sequence for some \(c \in [b, a] \).

Thus, if \(A, B \) form a sandwich pair and \(\Phi \) satisfies (1.2) as well as \((PS)_c\) for all \(c \in [b, a] \), then \(\Phi \) has a critical point. In [6] sandwich pairs constructed using the eigenspaces of a linear operator were used to solve semilinear elliptic boundary value problems, and in [4,5] the authors solved quasilinear problems using cones as sandwich pairs. In the present paper we use more general curved sandwich pairs made up of orbits of a certain group action on product spaces to solve systems of quasilinear equations.

* Corresponding author.
E-mail addresses: kperera@fit.edu (K. Perera), mschecht@math.uci.edu (M. Schechter).

0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.05.028
We consider the class of problems
\[
\begin{aligned}
-\Delta_p u &= \nabla F(x, u) \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\tag{1.3}
\]
where \(\Omega \) is a bounded domain in \(\mathbb{R}^n, n \geq 1 \), \(p = (p_1, \ldots, p_m) \) with each \(p_i \in (1, \infty) \), \(u = (u_1, \ldots, u_m) \). \(\Delta_p u = (\Delta_{p_1} u_1, \ldots, \Delta_{p_m} u_m) \) where \(\Delta_{p_i} u_i = \text{div}(|\nabla u_i|^{p_i-2} \nabla u_i) \) is the \(p_i \)-Laplacian of \(u_i, F \in C^1(\Omega \times \mathbb{R}^m) \), and \(\nabla F = (\partial F/\partial u_1, \ldots, \partial F/\partial u_m) \). We assume that
\[
\left| \frac{\partial F}{\partial u_i} \right| \leq C \left(\sum_{j=1}^m |u_j|^{r_{ij} - 1} + 1 \right) \quad \forall (x, u) \in \Omega \times \mathbb{R}^m
\tag{1.4}
\]
for some \(C > 0 \) and \(r_{ij} \in (1, p_i^*(p_i^* - 1)/p_i^*), \) where
\[
p_i^* = \begin{cases} np_i/(n - p_i), & p_i < n, \\ \infty, & p_i \geq n \end{cases}
\tag{1.5}
\]
is the critical exponent for the Sobolev space \(W_0^{1,p_i}(\Omega) \) with the norm
\[
\| u_i \| = \left(\int_\Omega |\nabla u_i|^{p_i} \right)^{1/p_i}.
\tag{1.6}
\]
Let
\[
W = W_0^{1,p_1}(\Omega) \times \cdots \times W_0^{1,p_m}(\Omega) = \left\{ u = (u_1, \ldots, u_m) : u_i \in W_0^{1,p_i}(\Omega) \right\}
\tag{1.7}
\]
with the norm
\[
\| u \| = \left(\sum_{i=1}^m \| u_i \|^2 \right)^{1/2}.
\tag{1.8}
\]
Then solutions of (1.3) coincide with critical points of
\[
\Phi(u) = I(u) - \int_\Omega F(x, u), \quad u \in W,
\tag{1.9}
\]
where
\[
I(u) = \sum_{i=1}^m \frac{1}{p_i} \int_\Omega |\nabla u_i|^{p_i} = \sum_{i=1}^m \frac{1}{p_i} \| u_i \|^{p_i}.
\tag{1.10}
\]
Under additional assumptions on \(F \), we will obtain critical points of \(\Phi \) using suitable sandwich pairs.

2. Sandwich pairs

In this section we construct sandwich pairs applicable to our problem (1.3). Let \(W \) be a Banach space and let \(\Sigma \) be the class of maps \(\sigma \in C(W \times [0, 1], W) \) such that, writing \(\sigma_t = \sigma(\cdot, t), \)

(i) \(\sigma_0 = \text{id}, \)
(ii) \(\sup_{(u, t) \in W \times [0, 1]} \| \sigma_t(u) - u \| < \infty. \)

We use the customary notation
\[
\Phi^a = \left\{ u \in W : \Phi(u) \leq a \right\}, \quad \Phi_a = \left\{ u \in W : \Phi(u) \geq a \right\}
\tag{2.1}
\]
for the sublevel and superlevel sets of a functional.

Lemma 2.1. \(A, B \subset W \) form a sandwich pair if
\[
\sigma_1(A) \cap B \neq \emptyset \quad \forall \sigma \in \Sigma.
\tag{2.2}
\]
Proof. Let $\Phi \in C^1(W, \mathbb{R})$ satisfy (1.2) and set

$$c := \inf_{\sigma \in \Sigma} \sup_{u \in \sigma(A)} \Phi(u).$$

(2.3)

Then $c \geq b$ by (2.2) and $c \leq a$ since the identity $\sigma(t) \equiv u$ is in Σ.

We claim that Φ has a $(PS)_c$ sequence. If not, the $(PS)_c$ condition holds vacuously and c is not a critical value of Φ. so there are $\varepsilon > 0$ and $\eta \in \Sigma$ such that $\eta_1(\Phi^{c+\varepsilon}) \subset \Phi^{c-\varepsilon}$ (see, e.g., Brezis and Nirenberg [1]). Take a $\sigma \in \Sigma$ such that $\sigma(A) \subset \Phi^{c+\varepsilon}$ and define $\tilde{\sigma} \in \Sigma$ by

$$\tilde{\sigma}(u) = \begin{cases} \sigma_{2t}(u), & 0 \leq t \leq 1/2, \\ \eta_{2t-1}(\sigma_1(u)), & 1/2 < t \leq 1. \end{cases}$$

(2.4)

Then $\tilde{\sigma}(A) \subset \Phi^{c-\varepsilon}$, contradicting the definition (2.3) of c. □

Let

$$S = \{u \in W: \|u\| = 1\}$$

(2.5)

be the unit sphere in W and let

$$\pi_S: W \setminus \{0\} \to S, \quad u \mapsto \frac{u}{\|u\|}$$

(2.6)

be the radial projection onto S. Now let M be a bounded symmetric subset of $W \setminus \{0\}$ radially homeomorphic to S, i.e., $g = \pi_S|_M: M \to S$ is a homeomorphism. Then the radial projection from $W \setminus \{0\}$ onto M is given by $\pi_M = g^{-1} \circ \pi_S$. For $A \subset M$ and $r > 0$, we set

$$rA = \{ru: u \in A\}$$

(2.7)

and

$$\tilde{A} = \pi^{-1}_M(A) \cup \{0\} = \bigcup_{r \geq 0} rA.$$

(2.8)

We denote by SA the suspension of $A \subset W$, obtained from $A \times [-1, 1]$ by collapsing $A \times \{1\}$ and $A \times \{-1\}$ to different points, which can be realized in $W \oplus \mathbb{R}$ as the union of all line segments joining the two points $(0, \pm 1) \in W \oplus \mathbb{R}$ to points of A. For a symmetric subset A of $W \setminus \{0\}$, we denote by $i(A)$ the cohomological index of A and recall that

$$i(SA) = i(A) + 1$$

(2.9)

when A is closed (see Fadell and Rabinowitz [2]).

Theorem 2.2. If A_0, B_0 is a pair of disjoint nonempty closed symmetric subsets of M such that

$$i(A_0) = i(M \setminus B_0) < \infty$$

(2.10)

and h is an odd homeomorphism of W such that

$$\text{dist}(h(rA_0), h(B_0)) \to \infty \quad \text{as} \quad r \to \infty,$$

(2.11)

then $A = h(A_0), B = h(B_0)$ form a sandwich pair.

Proof. By Lemma 2.1, it suffices to verify (2.2), so suppose there is a $\sigma \in \Sigma$ with

$$\sigma_1(A) \cap B = \emptyset.$$

(2.12)

By (2.11), there is an $R > 1$ such that

$$\text{dist}(h(RA_0), h(B_0)) > \sup_{(u, t) \in W \times [0, 1]} \|\sigma(t(u)) - u\|$$

(2.13)

and hence

$$\sigma_t(h(RA_0)) \cap B = \emptyset \quad \forall t \in [0, 1].$$

(2.14)

By (2.12) and (2.14), we can define a map $\eta \in C(A_0 \times [0, 1], W \setminus B)$ by
\[\eta(u,t) = \begin{cases}
 h((1 - 3t + 3Rt)u), & u \in A_0, \quad 0 \leq t \leq 1/3, \\
 \sigma_{3t-1}(h(Ru)), & u \in A_0, \quad 1/3 < t \leq 2/3, \\
 \sigma_1(h(3(1-t)Ru)), & u \in A_0, \quad 2/3 < t \leq 1.
\] (2.15)

Since \(\eta_{A_0 \times \{0\}} = h_{A_0} \) is odd and \(\eta(A_0 \times \{1\}) \) is the single point \(\sigma_1(h(0)) \), \(\eta \) can be extended to an odd map \(\tilde{\eta} \in C(SA_0, W \setminus B) \). Then \(\pi_M \circ h^{-1} \circ \tilde{\eta} \) is an odd continuous map from \(SA_0 \) into \(M \setminus B_0 \) and hence

\[i(M \setminus B_0) \geq i(SA_0) = i(A_0) + 1 \] (2.16)

by the monotonicity of the index, contradicting (2.10). \(\square \)

3. Eigenvalue problems for \(p \)-Laplacian systems

In this section we recall some results on eigenvalue problems for \(p \)-Laplacian systems proved in Perera et al. [3]. Define a continuous flow on \(W \), as well as on \(\mathbb{R}^m \), by

\[(\alpha, u) \mapsto u_\alpha := (|\alpha|^{1/p_1}-1\alpha u_1, \ldots, |\alpha|^{1/p_m}-1\alpha u_m) \] (3.1)

for \(\alpha \in \mathbb{R} \). Noting that the functional in (1.10) satisfies

\[I(u_\alpha) = |\alpha|I(u) \quad \forall \alpha \in \mathbb{R}, \ u \in W, \] (3.2)

we consider the eigenvalue problem

\[
\begin{align*}
-\Delta_p u &= \lambda \nabla u f(x,u) & \text{in } \Omega, \\
u &= 0 & \text{on } \partial \Omega,
\end{align*}
\] (3.3)

associated with our problem (1.3), where \(f(x,u) \in C^1(\Omega \times \mathbb{R}^m) \) is positive somewhere and satisfies

\[f(x,u) = |\alpha|f(x,u) \quad \forall \alpha \in \mathbb{R}, \ (x,u) \in \Omega \times \mathbb{R}^m \] (3.4)

and the growth condition (1.4) with \(J \) in place of \(F \).

For example, taking

\[f(x,u) = |u_1|^{r_1} \cdots |u_m|^{r_m} \] (3.5)

with \(r_i \in (1, p_i) \) and

\[\sum_{i=1}^m r_i = 1 \] (3.6)

gives

\[
\begin{align*}
-\Delta_{p_i} u_i &= \lambda r_i |u_1|^{r_1} \cdots |u_i|^{r_i-2} u_i \cdots |u_m|^{r_m} & \text{in } \Omega, \ i = 1, \ldots, m, \\
u_1 = \cdots = u_m &= 0 & \text{on } \partial \Omega.
\end{align*}
\] (3.7)

Let

\[J(u) = \int_\Omega f(x,u), \quad u \in W \] (3.8)

and

\[M = \{ u \in W: I(u) = 1 \}, \quad M^+ = \{ u \in M: J(u) > 0 \}. \] (3.9)

Then \(M \subset W \setminus \{0\} \) is a bounded symmetric \(C^1 \)-Finsler manifold radially homeomorphic to \(S \), \(M^+ \) is an open submanifold of \(M \), and positive eigenvalues of (3.3) coincide with critical values of

\[\Psi(u) = \frac{1}{J(u)}, \quad u \in M^+ \] (3.10)

(see Lemmas 10.14 and 10.15 of Perera et al. [3]). Taking \(\alpha = -1 \) in (3.4) shows that \(f(x,u) \) is even in \(u \), so \(\Psi \) is even. Letting \(\mathcal{F} \) denote the class of symmetric subsets of \(M^+ \), we can define a positive, nondecreasing, and unbounded sequence of eigenvalues of (3.3) by

\[\lambda_k := \inf_{M \in \mathcal{F}} \sup_{u \in M} \Psi(u), \] (3.11)
and for this particular sequence of eigenvalues
\[i(\psi^\lambda) = i(M^+ \setminus \psi_{\lambda_k+1}) = k \] (3.12)
when \(\lambda_k < \lambda_{k+1} \) (see Theorem 10.1.8 of Perera et al. [3]).

4. Main result

In this section we give sufficient conditions on \(F \) for the existence of a solution to our problem (1.3). Let \(M \) be as in (3.9). Identifying \(W \) with \(\{ \alpha u: u \in M, \alpha \geq 0 \} \),
\[
h(\alpha u) = u_a
\]
defines an odd homeomorphism of \(W \). For \(A \subset M \) and \(A \) defined by (2.8),
\[
h(A) = \{ u_a: u \in A, \alpha \geq 0 \}.
\]

We also note that
\[
l(\alpha u) = \alpha , \quad f(\alpha u) = \alpha f(u) \quad \forall u \in M, \alpha \geq 0
\]
by (3.2) and (3.4), respectively.

Lemma 4.1. If \(\lambda_k < \lambda_{k+1} \) and \(\lambda_k \leq M(x) \leq \lambda_{k+1} \) for all \(c \in \mathbb{R} \) in the following cases:

(i) \(H(x,u) \leq C(\tau(u) + 1) \) and \(\tau(u) \rightarrow \infty \) and \(\lim_{\tau(u) \rightarrow \infty} H(x,u)/\tau(u) < 0, \)

then \(\Phi(\lambda_k) \) is as in (3.9) and (3.10). Then (3.12) implies (2.10), so \(A = h(\hat{A}_0), B = h(\hat{B}_0) \) form a sandwich pair by Theorem 2.2.

By (4.2),
\[
A = \{ u_a: u \in A_0, \alpha \geq 0 \}, \quad B = \{ u_a: u \in B_0, \alpha \geq 0 \}.
\]

For \(u \in A_0 \) and \(\alpha \geq 0, J(u) \geq 1/\lambda_k \) and hence \(\Phi(u_a) \leq K \) by (4.5), so \(\Phi \leq K \) on \(A \) by (4.7). Similarly, \(J(u) \leq 1/\lambda_{k+1} \) and hence \(\Phi(u_a) \geq -K \) for \(u \in B_0 \) and \(\alpha \geq 0 \), so \(\Phi \geq -K \) on \(B \). \(\square \)

Let
\[
H(x,u) = F(x,u) - \sum_{i=1}^{m} \frac{u_i \partial F}{p_i \partial u_i}
\]
and
\[
\tau(u) = \sum_{i=1}^{m} \frac{1}{p_i} |u_i|^{p_i}.
\]

Note that
\[
\tau(u_a) = |\alpha| \tau(u) \quad \forall \alpha \in \mathbb{R}, \ u \in \mathbb{R}^m.
\]

Lemma 4.2. If (4.4) holds, then \(\Phi \) satisfies (PS)\(\epsilon \) for all \(c \in \mathbb{R} \) in the following cases:

(i) \(H(x,u) \leq C(\tau(u) + 1) \) and \(\limsup_{\tau(u) \rightarrow \infty} H(x,u)/\tau(u) < 0, \)
for some $C > 0$.

Proof. We give the proof under assumption (i). The proof under (ii) is similar. Let (u^i) be a $(PS)_c$ sequence. By a standard argument, it suffices to show that $\{u^i\}$ is bounded, so suppose $\rho_j := l(u^i) \to \infty$ and set $\tilde{u}^i := u^i_1/\rho_j$. Then $l(\tilde{u}^i) = 1$ by (3.2) and hence a subsequence of (\tilde{u}^i) converges to some \tilde{u} weakly in W, strongly in $L^{p_1}(\Omega) \times \cdots \times L^{p_m}(\Omega)$, and a.e. in $\Omega \times \cdots \times \Omega$. We have

$$\int_\Omega \frac{H(x, u^i)}{\rho_j} = \frac{\langle \Phi'(u^i), (u^i_1/p_1, \ldots, u^i_m/p_m) \rangle - \Phi(u^i)}{\rho_j} \to 0$$

by (1.1). On the other hand, $\tau(u^i)/\rho_j = \tau(\tilde{u}^i)$ by (4.10) and hence

$$\lim_{(\tilde{u}^i \neq 0)} \int_\Omega \frac{H(x, u^i)}{\rho_j} \leq \int_{(\tilde{u}^i \neq 0)} \lim_{(\tilde{u}^i \neq 0)} \frac{H(x, u^i)}{\tau(u^i)} \tau(\tilde{u}^i) \gamma_i + \int_{(\tilde{u}^i = 0)} \lim_{(\tilde{u}^i = 0)} C(\tau(\tilde{u}^i) + 1/\rho_j) = \int_\Omega H(x) \tau(\tilde{u}) \leq 0.$$

(4.12)

It follows that $\tilde{u} = 0$. But, passing to the limit in

$$1 - \frac{\Phi(u^i)}{\rho_j} = \int_\Omega \frac{F(x, u^i)}{\rho_j} \leq \int_\Omega \frac{\gamma_{k+1} \gamma(x, \tilde{u}^i) + W(x)}{\rho_j}$$

(4.13)

gives $1 \leq \gamma_{k+1} \gamma(\tilde{u})$, and hence $\tilde{u} \neq 0$ since taking $\alpha = 0$ in (3.4) shows that $J(0) = 0$, a contradiction. \(\Box\)

We now have

Theorem 4.3. Under the hypotheses of Lemmas 4.1 and 4.2, problem (1.3) has a solution.

References