Multiple positive solutions of singular and nonsingular discrete problems via variational methods

Ravi P. Agarwal, Kanishka Perera, Donal O’Regan

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
Department of Mathematics, National University of Ireland, Galway, Ireland

Received 27 October 2003; accepted 1 November 2003

Abstract

We employ the critical point theory to establish the existence of multiple solutions of some regular as well as singular discrete boundary value problems.

MSC: 34B16; 39A10

Keywords: Discrete boundary value problem; Multiple solutions; Variational methods; Critical point theory

1. Introduction

The purpose of this note is to obtain multiple positive solutions of discrete boundary value problems. We consider

$$\Delta^2 y(k - 1) + f(k, y(k)) = 0, \quad k \in [1, T],$$

$$y(0) = y(T + 1) = 0,$$

where T is a positive integer, $[1, T]$ is the discrete interval $\{1, \ldots, T\}$, and $\Delta y(k) = y(k + 1) - y(k)$ is the forward difference operator. First we suppose that $f \in C([1, T] \times [0, \infty), \mathbb{R})$ satisfies

$$f(k, 0) \geq 0, \quad \forall k,$$

so that (1.1) is of positone type, and seek nonnegative solutions.
The class H of functions $y : [0, T + 1] \to \mathbb{R}$ such that $y(0) = y(T + 1) = 0$ is a T-dimensional Hilbert space with inner product

$$(y, z) = \sum_{k=1}^{T+1} \Delta y(k-1) \Delta z(k-1)$$

and we denote the induced norm by $\| \cdot \|$. Let $\lambda_1 > 0$ be the smallest eigenvalue of

$$\Delta^2 y(k-1) + \lambda y(k) = 0, \quad y \in H.$$

(1.4)

Using variational methods we shall prove.

Theorem 1.1. If (1.2) holds,

$$\min_{k \in [1, T]} \liminf_{u \to \infty} \frac{f(k, u)}{u} > \lambda_1$$

(1.5)

and there is a constant $M > 0$, independent of λ, such that $\| y \| \neq M$ for every solution $y \geq 0$ to

$$\Delta^2 y(k-1) + \lambda f(k, y(k)) = 0, \quad y \in H.$$

(1.6)

for each $\lambda \in (0, 1]$, then (1.1) has two nonnegative solutions, at least one of which is positive in $[1, T]$.

Next, assuming only that $f \in C([1, T] \times (0, \infty), [0, \infty))$ satisfies

$$\liminf_{u \to 0^+} f(k, u) > 0, \quad \forall k,$$

(1.7)

so that it may be singular at $u = 0$, we shall deduce from Theorem 1.1

Theorem 1.2. If (1.5) and (1.7) hold and there is a constant $M > 0$, independent of λ, such that $\| y \| \neq M$ for every solution $y > 0$ to (1.6) for each $\lambda \in (0, 1]$, then (1.1) has at least two positive solutions.

We refer the reader to Agarwal [1] for a broad introduction to difference equations and to Rabinowitz [3] for variational methods.

2. Proof of Theorem 1.1

Let $y^\pm = \max\{\pm y, 0\}$. First we show that it suffices to get two solutions of

$$\Delta^2 y(k-1) + f(k, y^+(k)) = 0, \quad y \in H.$$

(2.1)

Lemma 2.1. For $\lambda \in (0, 1]$, if y is a solution of

$$\Delta^2 y(k-1) + \lambda f(k, y^+(k)) = 0, \quad y \in H$$

(2.2)

then $y \geq 0$ and hence it is also a solution of (1.6). Moreover, either $y > 0$ in $[1, T]$, or $y = 0$ everywhere.
Proof. We have
\[0 = \sum_{k=1}^{T} \left[\Delta^2 y(k-1) + \lambda f(k, y^+(k)) \right] y^-(k) \]
\[= \sum_{k=1}^{T+1} \left[-\Delta y(k-1) \Delta y^-(k-1) + \lambda f(k, 0) y^-(k) \right] \]
\[\geq -\langle y, y^- \rangle \geq \|y^\|_2^2 \] (2.3)
so \(y^- = 0 \). If \(y(k) = 0 \) then
\[y(k+1) + y(k-1) = \Delta^2 y(k-1) = -\lambda f(k, 0) \leq 0, \] (2.4)
so \(y(k \pm 1) = 0 \), and it follows that if \(y \) is zero somewhere in \([1, T]\) then it vanishes identically.

Define
\[\Phi(y) = \sum_{k=1}^{T+1} \left[\frac{1}{2} |\Delta y(k-1)|^2 - F(k, y^+(k)) + f(k, 0) y^-(k) \right], \quad y \in H, \] (2.5)
where \(F(k, u) = \int_0^u f(k, v) \, dv \). Then the functional \(\Phi \) is \(C^1 \) with
\[(\Phi'(y), z) = \sum_{k=1}^{T+1} \left[\Delta y(k-1) \Delta z(k-1) - f(k, y^+(k)) z(k) \right] \]
\[= -\sum_{k=1}^{T} \left[\Delta^2 y(k-1) + f(k, y^+(k)) \right] z(k), \] (2.6)
so solutions of (2.1) are precisely the critical points of \(\Phi \).

Lemma 2.2. \(\Phi \) satisfies the Palais–Smale compactness condition, i.e., every sequence \(\{y_m\} \) in \(H \) such that \(\Phi(y_m) \) is bounded and \(\Phi'(y_m) \to 0 \) has a convergent subsequence.

Proof. Since \(H \) is finite dimensional, it suffice to show that \(\{y_m\} \) is bounded. As in (2.3) and (2.6),
\[\|y_m^-\|_2^2 \leq - \langle \Phi'(y_m), y_m^- \rangle = o(1) \|y_m^-\| \] (2.7)
so \(y_m^- \to 0 \). Suppose that \(\{y_m^+\} \) is unbounded. Passing to a subsequence we may assume that \(\rho_m := \|y_m^+\| \to \infty \) and for each \(k \), either \(y_m^+(k) \to \infty \) or \(\{y_m^+(k)\} \) is bounded.

Denoting by \(\varphi_1 > 0 \), \(\|\varphi_1\| = 1 \) the eigenfunction associated with \(\lambda_1 \),
\[\lambda_1 \sum_{k=1}^{T} y_m(k) \varphi_1(k) = \sum_{k=1}^{T+1} \Delta y_m(k-1) \Delta \varphi_1(k-1) \]
\[= \sum_{k=1}^{T} f(k, y_m^+(k)) \varphi_1(k) + (\Phi'(y_m), \varphi_1), \] (2.8)
by (2.6), and dividing by ρ_m gives
\begin{equation}
\lambda_1 \sum_{k=1}^{T} \tilde{y}_m(k) \phi_1(k) = \sum_{k=1}^{T} \frac{f(k, y_m^+(k))}{y_m^+(k)} \tilde{y}_m(k) \phi_1(k) + o(1)
\end{equation}
(2.9)
where $\tilde{y}_m = y_m^+ / \rho_m$. For a subsequence, \tilde{y}_m converges to some $\tilde{y} \geq 0$ with $\|\tilde{y}\| = 1$. If $y_m^+(k) \to \infty$ then $\liminf f(k, y_m^+(k)) / y_m^+(k) > \lambda_1$ by assumption, and if $\{y_m^+(k)\}$ is bounded then $f(k, y_m^+(k)) / \rho_m \to 0$ and $\tilde{y}(k) = 0$. Since $\tilde{y} \neq 0$, there is a k for which $y_m^+(k) \to \infty$ and $\tilde{y}(k) > 0$, so passing to the limit in (2.9) yields a contradiction.

Let
\begin{equation}
U = \{y \in H : \|y\| < M\}.
\end{equation}
(2.10)
The restriction of Φ to the compact set \tilde{U} assumes its minimum at some point y_0. If $y_0 \in \partial U$ then it is also a minimizer of $\Phi_{|\partial U}$, so the gradient of Φ at y_0 points in the direction of the inward normal to ∂U, i.e.,
\begin{equation}
\Phi'(y_0) = -\mu y_0
\end{equation}
(2.11)
for some $\mu \geq 0$. But then y_0 is a solution of (1.6) with $\lambda = 1/(1 + \mu) \in (0, 1]$ and $\|y_0\| = M$, contrary to hypothesis. Thus $y_0 \in U$ and hence it is a local minimizer of Φ.

The above argument also shows that
\begin{equation}
\min_{y \in \partial U} \Phi(y) > \Phi(y_0).
\end{equation}
(2.12)
Taking $\varepsilon > 0$ so small that $\lambda_1 + \varepsilon < \lambda_1$ leads to the left-hand side of (1.5),
\begin{equation}
2F(k, u) \geq (\lambda_1 + \varepsilon)u^2 - C, \quad \forall (k, u),
\end{equation}
(2.13)
where C denotes a generic positive constant, so
\begin{align}
\Phi(t_1 \phi_1) & \leq \frac{t_1^2}{2} \sum_{k=1}^{T+1} [|\Delta \phi_1(k - 1)|^2 - (\lambda_1 + \varepsilon)|\phi_1(k)|^2] + C \\
& = -\frac{\varepsilon t_1^2}{2\lambda_1} + C < \min_{y \in \partial U} \Phi(y)
\end{align}
(2.14)
for $t_1 > M$ sufficiently large. The mountain pass lemma now gives the critical value
\begin{equation}
c := \inf_{y \in \Gamma} \max_{y \in \gamma([0, 1])} \Phi(y),
\end{equation}
(2.15)
where
\begin{equation}
\Gamma = \{\gamma \in C([0, 1], H) : \gamma(0) = y_0, \gamma(1) = t_1 \phi_1\}
\end{equation}
(2.16)
is the class of paths in H joining y_0 and $t_1 \phi_1$. Since every path $\gamma \in \Gamma$ intersects ∂U, $c \geq \min \Phi(\partial U) > \Phi(y_0)$.
3. **Proof of Theorem 1.2**

For $\varepsilon > 0$, define $f_\varepsilon \in C([1,T] \times [0,\infty),[0,\infty))$ by

$$f_\varepsilon(k,u) = f_k(u - \varepsilon)^+ + \varepsilon.$$ \hfill (3.1)

We claim that for all sufficiently small ε, if $y \geq 0$ is a solution of

$$\Delta^2 y(k - 1) + f_\varepsilon(k,y(k)) = 0, \quad y \in H$$ \hfill (3.2)

then $y \geq \varepsilon$ and hence it is also a solution of (1.1). If not, there is a sequence $\varepsilon_m \to 0$ and corresponding solutions y_m such that $\min y_m([1,T]) < \varepsilon_m$. Passing to a subsequence, there is a $k \in [1,T]$ such that $y_m(k) = \min y_m([1,T])$ for each m. Since

$$2y_m(k) = y_m(k + 1) + y_m(k - 1) + f_\varepsilon(k,y_m(k)) \geq f(k,\varepsilon_m),$$ \hfill (3.3)

then $f(k,\varepsilon_m) \to 0$, contrary to assumption (1.7).

By hypothesis, $\|y\| \neq M$ for every solution $y \geq \varepsilon$ to

$$\Delta^2 y(k - 1) + \lambda f_\varepsilon(k,y(k)) = 0, \quad y \in H$$ \hfill (3.4)

for each $\lambda \in (0,1]$. On the other hand, by Lemma 17.6 of Agarwal, O’Regan, and Wong [2] there is a constant $C > 0$ such that

$$\Delta^2 y(k - 1) \leq 0, \quad y \in H \quad \Rightarrow \quad \|y\| \leq C \min_{k \in [1,T]} y(k),$$ \hfill (3.5)

so taking $\varepsilon \leq M/C$, we have $\|y\| < M$ for solutions of (3.4) with $\min y([1,T]) < \varepsilon$. Theorem 1.1 now gives two nonnegative solutions of problem (3.2).

References

