Kanishka Perera's Publications

Research Monographs

  
Publisher's Website                  Publisher's Website

Papers

[104] Perera, K., Shivaji, R., Sim, I.
Ground state positive solutions of critical semipositone p-Laplacian problems
arXiv:1612.08921 [math.AP]

[103] Perera, K., Zou, W.
p-Laplacian problems involving critical Hardy-Sobolev exponents
arXiv:1609.01804 [math.AP]

[102] Perera, K., Yang, Y., Zhang, Z. T.
Asymmetric critical p-Laplacian problems
arXiv:1602.01071 [math.AP]

[101] Yang, Y., Perera, K.
Existence and nondegeneracy of ground states in critical free boundary problems
arXiv:1405.1108 [math.AP]

[100] Perera, K., Tintarev, C., Wang, J., Zhang, Z.
Ground and bound state solutions for a Schrödinger system with linear and nonlinear couplings in RN
Adv. Differential Equations, to appear.
arXiv:1604.08298 [math.AP]

[99] Jerison, D., Perera, K.
Higher critical points in an elliptic free boundary problem
J. Geom. Anal. (2017), https://doi.org/10.1007/s12220-017-9862-8.
Full Text PDF

[98] Perera, K., Squassina, M.
Existence results for double-phase problems via Morse theory
Commun. Contemp. Math. (2017), https://doi.org/10.1142/S0219199717500237.
Full Text PDF

[97] Perera, K., Squassina, M.
Bifurcation results for problems with fractional Trudinger-Moser nonlinearity
Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 3, 561-576.
Full Text PDF

[96] Guo, Z., Perera, K., Zou, W.
On critical p-Laplacian systems
Adv. Nonlinear Stud. 17 (2017), no. 4, 641-659.
Full Text PDF

[95] Ho, K., Perera, K., Sim, I., Squassina, M.
A note on fractional p-Laplacian problems with singular weights
J. Fixed Point Theory Appl. 19 (2017), no. 1, 157-173.
Full Text PDF

[94] Barletta, G., Candito, P., Marano, S. A., Perera, K.
Multiplicity results for critical p-Laplacian problems
Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1431-1440.
Full Text PDF

[93] Yang, Y., Perera, K.
N-Laplacian problems with critical Trudinger-Moser nonlinearities
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XVI (2016), no. 4, 1123-1138.
Full Text PDF

[92] Mosconi, S., Perera, K., Squassina, M., Yang, Y.
The Brezis-Nirenberg problem for the fractional p-Laplacian
Calc. Var. Partial Differential Equations 55 (2016), no. 4, Paper No. 105, 25 pp.
Full Text PDF

[91] Iannizzotto, A., Liu, S., Perera, K., Squassina, M.
Existence results for fractional p-Laplacian problems via Morse theory
Adv. Calc. Var. 9 (2016), no. 2, 101-125.
Full Text PDF

[90] Yang, Y., Perera, K.
(N,q)-Laplacian problems with critical Trudinger-Moser nonlinearities
Bull. Lond. Math. Soc. 48 (2016), no. 2, 260-270.
Full Text PDF

[89] Perera, K., Squassina, M., Yang, Y.
Bifurcation and multiplicity results for critical p-Laplacian problems
Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 187-194.
Full Text PDF

[88] Perera, K., Squassina, M., Yang, Y.
Bifurcation and multiplicity results for critical fractional p-Laplacian problems
Math. Nachr. 289 (2016), no. 2-3, 332-342.
Full Text PDF

[87] Perera, K., Squassina, M., Yang, Y.
Critical fractional p-Laplacian problems with possibly vanishing potentials
J. Math. Anal. Appl. 433 (2016), no. 2, 818-831.
Full Text PDF

[86] Candito, P., Marano, S. A., Perera, K.
On a class of critical (p,q)-Laplacian problems
NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 6, 1959-1972.
Full Text PDF

[85] Iannizzotto, A., Perera, K., Squassina, M.
Ground states for scalar field equations with anisotropic nonlocal nonlinearities
Discrete Contin. Dyn. Syst. Ser. A 35 (2015), no. 12, 5963-5976.
Full Text PDF

[84] Candela, A. M., Palmieri, G., Perera, K.
Multiple solutions for p-Laplacian type problems with asymptotically p-linear terms via a cohomological index theory
J. Differential Equations 259 (2015), no. 1, 235-263.
Full Text PDF

[83] Perera, K., Squassina, M., Yang, Y.
A note on the Dancer-Fucík spectra of the fractional p-Laplacian and Laplacian operators
Adv. Nonlinear Anal. 4 (2015), no. 1, 13-23.
Full Text PDF

[82] Perera, K., Tintarev, C.
On the second minimax level of the scalar field equation and symmetry breaking
Ann. Mat. Pura Appl. (4) 194 (2015), no. 1, 131-144.
Full Text PDF

[81] Perera, K., Tintarev, C.
A nodal solution of the scalar field equation at the second minimax level
Bull. Lond. Math. Soc. 46 (2014), no. 6, 1218-1225.
Full Text PDF

[80] Perera, K.
A multiplicity result for the scalar field equation
Adv. Nonlinear Anal. 3 (2014), no. S1, s47-s54.
Full Text PDF

[79] Perera, K., Squassina, M.
Asymptotic behavior of the eigenvalues of the p(x)-Laplacian
Manuscripta Math. 144 (2014), no. 3, 535-544.
Full Text PDF

[78] Perera, K., Pucci, P., Varga, C.
An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains
NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 3, 441-451.
Full Text PDF

[77] Perera, K., Sim, I.
p-Laplace equations with singular weights
Nonlinear Anal. 99 (2014), 167-176.
Full Text PDF

[76] Agarwal, R. P., Bhaskar, T. G., Perera, K.
Some results for impulsive problems via Morse theory
J. Math. Anal. Appl. 409 (2014), no. 2, 752-759.
Full Text PDF

[75] Perera, K., Squassina, M.
On symmetry results for elliptic equations with convex nonlinearities
Commun. Pure Appl. Anal. 12 (2013), no. 6, 3013-3026.
Full Text PDF

[74] Bhaskar, T. G., Perera, K.
On some elliptic interface problems with nonhomogeneous jump conditions
Adv. Nonlinear Anal. 2 (2013), no. 2, 195-211.
Full Text PDF

[73] Perera, K., Schechter, M.
Morse theory applied to semilinear problems
Complex Var. Elliptic Equ. 57 (2012), no. 11, 1179-1189.
Full Text PDF

[72] El Manouni, S., Perera, K., Shivaji, R.
On singular quasi-monotone (p,q)-Laplacian systems
Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 3, 585-594.
Full Text PDF

[71] Agarwal, R. P., Perera, K., Zhang, Z. T.
On some nonlocal eigenvalue problems
Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 4, 707-714.
Full Text PDF

[70] Carl, S., Perera, K.
Generalized solutions of singular p-Laplacian problems in RN
Nonlinear Stud. 18 (2011), no. 1, 113-124.
Full Text PDF

[69] Perera, K.
Morse theory and applications to variational problems
Handbook of nonconvex analysis and applications, 475-506, Int. Press, Somerville, MA, 2010.
Full Text PDF

[68] Candela, A. M., Medeiros, E. S., Palmieri, G., Perera, Kaniskha
Weak solutions of quasilinear elliptic systems via the cohomological index
Topol. Methods Nonlinear Anal. 36 (2010), no. 1, 1-18.
Full Text PDF

[67] Candela, A. M., Palmieri, G., Perera, K.
Nontrivial solutions of some quasilinear problems via a cohomological local splitting
Nonlinear Anal. 73 (2010), no. 7, 2001-2009.
Full Text PDF

[66] Perera, K., Agarwal, R. P., O'Regan, D.
Nontrivial solutions of p-superlinear anisotropic p-Laplacian systems via Morse theory
Topol. Methods Nonlinear Anal. 35 (2010), no. 2, 367-378.
Full Text PDF

[65] Degiovanni, M., Lancelotti, S., Perera, K.
Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting
Commun. Contemp. Math. 12 (2010), no. 3, 475-486.
Full Text PDF

[64] El Manouni, S., Perera, K.
Multiple non-trivial solutions of the Neumann problem for p-Laplacian systems
Complex Var. Elliptic Equ. 55 (2010), no. 5-6, 573-579.
Full Text PDF

[63] Perera, K., Agarwal, R. P., O'Regan, D.
Multiplicity results for p-sublinear p-Laplacian problems involving indefinite eigenvalue problems via Morse theory
Electron. J. Differential Equations 2010, No. 41, 6 pp.
Full Text PDF

[62] Perera, K., Silva, E. A. de B. e
Multiple positive solutions of singular elliptic problems
Differential Integral Equations 23 (2010), no. 5-6, 435-444.
Full Text PDF

[61] Medeiros, E. S., Perera, K., Tintarev, K.
Multiplicity results for problems involving the Hardy-Sobolev operator via Morse theory
Nonlinear Anal. 72 (2010), no. 5, 2170-2177.
Full Text PDF

[60] Motreanu, D., Perera, K.
Multiple nontrivial solutions of Neumann p-Laplacian systems
Topol. Methods Nonlinear Anal. 34 (2009), no. 1, 41-48.
Full Text PDF

[59] Liu, S. B., Medeiros, E. S., Perera, K.
Multiplicity results for p-biharmonic problems via Morse theory
Commun. Appl. Anal. 13 (2009), no. 3, 447-455.
Full Text PDF

[58] Medeiros, E. S., Perera, K.
Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index
Nonlinear Anal. 71 (2009), no. 9, 3654-3660.
Full Text PDF

[57] Perera, K., Schechter, M.
Sandwich pairs for p-Laplacian systems
J. Math. Anal. Appl. 358 (2009), no. 2, 485-490.
Full Text PDF

[56] Perera, K., Schechter, M.
Flows and critical points
NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 4-5, 495-509.
Full Text PDF

[55] Agarwal, R. P., Otero-Espinar, V., Perera, K., Rodríguez-Vivero, D.
Multiple positive solutions in the sense of distributions of singular BVPs on time scales and an application to Emden-Fowler equations
Adv. Difference Equ. 2008, Art. ID 796851, 13 pp.
Full Text PDF

[54] Agarwal, R. P., Otero-Espinar, V., Perera, K., Rodríguez-Vivero, D.
Wirtinger's inequalities on time scales
Canad. Math. Bull. 51 (2008), no. 2, 161-171.
Full Text PDF

[53] Perera, K., Shivaji, R.
Positive solutions of multiparameter semipositone p-Laplacian problems
J. Math. Anal. Appl. 338 (2008), no. 2, 1397-1400.
Full Text PDF

[52] Agarwal, R. P., Perera, K., O'Regan, D.
Positive solutions in the sense of distributions of singular boundary value problems
Proc. Amer. Math. Soc. 136 (2008), no. 1, 279-286 (electronic).
Full Text PDF

[51] El Manouni, S., Perera, K.
Existence and nonexistence results for a class of quasilinear elliptic systems
Bound. Value Probl. 2007, Art. ID 85621, 5 pp.
Full Text PDF

[50] O'Regan, D., Agarwal, R. P., Perera, K.
Nonlinear integral equations singular in the dependent variable
Appl. Math. Lett. 20 (2007), no. 11, 1137-1141.
Full Text PDF

[49] Agarwal, R. P., Otero-Espinar, V., Perera, K., Rodríguez-Vivero, D.
Multiple positive solutions of singular Dirichlet problems on time scales via variational methods
Nonlinear Anal. 67 (2007), no. 2, 368-381.
Full Text PDF

[48] Agarwal, R. P., Otero-Espinar, V., Perera, K., Rodríguez-Vivero, D.
Existence of multiple positive solutions for second order nonlinear dynamic BVPs by variational methods
J. Math. Anal. Appl. 331 (2007), no. 2, 1263-1274.
Full Text PDF

[47] Perera, K., Schechter, M.
Sandwich pairs in p-Laplacian problems
Topol. Methods Nonlinear Anal. 29 (2007), no. 1, 29-34.
Full Text PDF

[46] Perera, K., Silva, E. A. de B. e
On singular p-Laplacian problems
Differential Integral Equations 20 (2007), no. 1, 105-120.
Full Text PDF

[45] Perera, K., Silva, E. A. de B. e
p-Laplacian problems with critical Sobolev exponents
Nonlinear Anal. 66 (2007), no. 2, 454-459.
Full Text PDF

[44] Perera, K., Silva, E. A. de B. e
Multiple positive solutions of singular p-Laplacian problems via variational methods
Differential & difference equations and applications, 915-924, Hindawi Publ. Corp., New York, 2006.
Full Text PDF

[43] Agarwal, R. P., Perera, K., O'Regan, D.
A variational approach to singular quasilinear elliptic problems with sign changing nonlinearities
Appl. Anal. 85 (2006), no. 10, 1201-1206.
Full Text PDF

[42] Perera, K., Silva, E. A. de B. e
Existence and multiplicity of positive solutions for singular quasilinear problems
J. Math. Anal. Appl. 323 (2006), no. 2, 1238-1252.
Full Text PDF

[41] Agarwal, R. P., Otero-Espinar, V., Perera, K., Rodríguez-Vivero, D.
Basic properties of Sobolev's spaces on time scales
Adv. Difference Equ. 2006, Art. ID 38121, 14 pp.
Full Text PDF

[40] Zhang, Z. T., Perera, K.
Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow
J. Math. Anal. Appl. 317 (2006), no. 2, 456-463.
Full Text PDF

[39] Perera, K., Zhang, Z. T.
Nontrivial solutions of Kirchhoff-type problems via the Yang index
J. Differential Equations 221 (2006), no. 1, 246-255.
Full Text PDF

[38] Agarwal, R. P., Perera, K., O'Regan, D.
Multiple positive solutions of singular problems by variational methods
Proc. Amer. Math. Soc. 134 (2006), no. 3, 817-824 (electronic).
Full Text PDF

[37] Perera, K., Zhang, Z. T.
Multiple positive solutions of singular p-Laplacian problems by variational methods
Bound. Value Probl. 2005, no. 3, 377-382.
Full Text PDF

[36] Agarval, R. P., Perera, K., O'Regan, D.
On positive solutions of higher-order singular problems
(Russian) Differ. Uravn. 41 (2005), no. 5, 702-705, 719; translation in Differ. Equ. 41 (2005), no. 5, 739-743.
Full Text PDF

[35] Agarwal, R. P., Perera, K., O'Regan, D.
Multiple positive solutions of singular discrete p-Laplacian problems via variational methods
Adv. Difference Equ. 2005, no. 2, 93-99.
Full Text PDF

[34] Perera, K., Szulkin, A.
p-Laplacian problems where the nonlinearity crosses an eigenvalue
Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 743-753.
Full Text PDF

[33] Perera, K.
On the Fucík spectrum of the p-Laplacian
NoDEA Nonlinear Differential Equations Appl. 11 (2004), no. 2, 259-270.
Full Text PDF

[32] Agarwal, R. P., Perera, K., O'Regan, D.
Multiple positive solutions of singular and nonsingular discrete problems via variational methods
Nonlinear Anal. 58 (2004), no. 1-2, 69-73.
Full Text PDF

[31] Perera, K.
p-superlinear problems with jumping nonlinearities
Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2, 823-829, Kluwer Acad. Publ., Dordrecht, 2003.
Full Text PDF

[30] Perera, K.
Nontrivial solutions of p-superlinear p-Laplacian problems
Appl. Anal. 82 (2003), no. 9, 883-888.
Full Text PDF

[29] Perera, K.
Nontrivial critical groups in p-Laplacian problems via the Yang index
Topol. Methods Nonlinear Anal. 21 (2003), no. 2, 301-309.
Full Text PDF

[28] Perera, K., Schechter, M.
Computation of critical groups in Fucík resonance problems
J. Math. Anal. Appl. 279 (2003), no. 1, 317-325.
Full Text PDF

[27] Perera, K., Schechter, M.
Double resonance problems with respect to the Fucík spectrum
Indiana Univ. Math. J. 52 (2003), no. 1, 1-17.
Full Text PDF

[26] Perera, K.
Multiple positive solutions for a class of quasilinear elliptic boundary-value problems
Electron. J. Differential Equations 2003, No. 7, 5 pp. (electronic).
Full Text PDF

[25] Carl, S., Perera, K.
Sign-changing and multiple solutions for the p-Laplacian
Abstr. Appl. Anal. 7 (2002), no. 12, 613-625.
Full Text PDF

[24] Perera, K.
An existence result for a class of quasilinear elliptic boundary value problems with jumping nonlinearities
Topol. Methods Nonlinear Anal. 20 (2002), no. 1, 135-144.
Full Text PDF

[23] Perera, K., Schechter, M.
Critical groups in saddle point theorems without a finite dimensional closed loop
Math. Nachr. 243 (2002), 156-164.
Full Text PDF

[22] Perera, K.
Resonance problems with respect to the Fucík spectrum of the p-Laplacian
Electron. J. Differential Equations 2002, No. 36, 10 pp. (electronic).
Full Text PDF

[21] Perera, K.
One-sided resonance for quasilinear problems with asymmetric nonlinearities
Abstr. Appl. Anal. 7 (2002), no. 1, 53-60.
Full Text PDF

[20] Li, S. J., Perera, K., Su, J. B.
On the role played by the Fucík spectrum in the determination of critical groups in elliptic problems where the asymptotic limits may not exist.
Nonlinear Anal. 49 (2002), no. 5, Ser. A: Theory Methods, 603-611.
Full Text PDF

[19] Li, S. J., Perera, K.
Computation of critical groups in resonance problems where the nonlinearity may not be sublinear
Nonlinear Anal. 46 (2001), no. 6, Ser. A: Theory Methods, 777-787.
Full Text PDF

[18] Perera, K., Schechter, M.
Solution of nonlinear equations having asymptotic limits at zero and infinity
Calc. Var. Partial Differential Equations 12 (2001), no. 4, 359-369.
Full Text PDF

[17] Li, S. J., Perera, K., Su, J. B.
Computation of critical groups in elliptic boundary-value problems where the asymptotic limits may not exist
Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 3, 721-732.
Full Text PDF

[16] Perera, K., Schechter, M.
Applications of Morse theory to the solution of semilinear problems depending on C1 functionals
Nonlinear Anal. 45 (2001), no. 1, Ser. A: Theory Methods, 1-9.
Full Text PDF

[15] Perera, K., Schechter, M.
The Fucík spectrum and critical groups
Proc. Amer. Math. Soc. 129 (2001), no. 8, 2301-2308 (electronic).
Full Text PDF

[14] Dancer, E. N., Perera, K.
Some remarks on the Fucík spectrum of the p-Laplacian and critical groups
J. Math. Anal. Appl. 254 (2001), no. 1, 164-177.
Full Text PDF

[13] Perera, K., Schechter, M.
A generalization of the Amann-Zehnder theorem to nonresonance problems with jumping nonlinearities
NoDEA Nonlinear Differential Equations Appl. 7 (2000), no. 4, 361-367.
Full Text PDF

[12] Perera, K., Schechter, M.
Multiple nontrivial solutions of elliptic semilinear equations
Topol. Methods Nonlinear Anal. 16 (2000), no. 1, 1-15.
Full Text PDF

[11] Perera, K., Schechter, M.
Nontrivial solutions of elliptic semilinear equations at resonance
Manuscripta Math. 101 (2000), no. 3, 301-311.
Full Text PDF

[10] Perera, K.
A critical point theorem with a relaxed boundary condition and critical groups
Nonlinear Anal. 39 (2000), no. 6, Ser. A: Theory Methods, 685-692.
Full Text PDF

[9] Perera, K.
Existence and multiplicity results for a Sturm-Liouville equation asymptotically linear at - and superlinear at +
Nonlinear Anal. 39 (2000), no. 6, Ser. A: Theory Methods, 669-684.
Full Text PDF

[8] Perera, K., Schechter, M.
Semilinear elliptic equations having asymptotic limits at zero and infinity
Abstr. Appl. Anal. 4 (1999), no. 4, 231-242.
Full Text PDF

[7] Perera, K.
Applications of local linking to asymptotically linear elliptic problems at resonance
NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 1, 55-62.
Full Text PDF

[6] Perera, K.
Critical groups of critical points produced by local linking with applications
Abstr. Appl. Anal. 3 (1998), no. 3-4, 437-446.
Full Text PDF

[5] Perera, K., Schechter, M.
Type II regions between curves of the Fucík spectrum and critical groups
Topol. Methods Nonlinear Anal. 12 (1998), no. 2, 227-243.
Full Text PDF

[4] Perera, K.
Homological local linking
Abstr. Appl. Anal. 3 (1998), no. 1-2, 181-189.
Full Text PDF

[3] Perera, K., Schechter, M.
Morse index estimates in saddle point theorems without a finite-dimensional closed loop
Indiana Univ. Math. J. 47 (1998), no. 3, 1083-1095.
Full Text PDF

[2] Perera, K.
Critical groups of pairs of critical points produced by linking subsets
J. Differential Equations 140 (1997), no. 1, 142-160.
Full Text PDF

[1] Perera, K.
Multiplicity results for some elliptic problems with concave nonlinearities
J. Differential Equations 140 (1997), no. 1, 133-141.
Full Text PDF