(Lecture 13) Least Mean Square Adaptive Filters.

Consider steepest descent algorithm:

\[\omega(n+1) = \omega(n) + \mu \left(-\frac{\partial J(\omega)}{\partial \omega} \right) \]

\[= \omega(n) + \mu (p - P \omega(n)) \]

where, \(P \) is an estimate of the cross correlation vector:

\[P = E \{ y(n) d(n) \} \]

\(P \) is an estimate of the correlation matrix:

\[P = E \{ y(n) y^H(n) \} \]

In practice the estimates of cross correlation vector and correlation matrix are obtained through a time domain averaging (assuming ergodicity of the processes). In other words,

\[P = \frac{1}{N} \sum_{n=0}^{N-1} y(n) d(n) \]

\[P = \frac{1}{N} \sum_{n=0}^{N-1} y(n) y^H(n) \]

As \(N \) becomes larger, both estimates become more accurate, but the memory requirements placed on the algorithm become larger.

For the LMS algorithm the estimates of \(P \) and \(R \) are obtained as:

\[\hat{P}(n) = y(n) d^H(n) \quad \text{in other words:} \quad N = 1 \]

\[\hat{R}(n) = y(n) y^H(n) \]

Therefore, instantaneous estimate of the gradient is given as:

\[\frac{\partial J(\omega)}{\partial \omega} \bigg|_{\omega = \omega(n)} = - \hat{P}(n) - \hat{R}(n) \omega(n) \]

\[= - y(n) d(n) + y(n) y^H(n) \omega(n) \]
\[\nabla J(n) = -\mu(n) \cdot [P(n-1) - \mu^H(n) \cdot \omega(n)] = \\
= -\mu(n) \cdot [P(n-1) - \omega^H(n) \cdot \mu(n)]^* = \\
= -\mu(n) \cdot \epsilon^*(n) \]

\[\nabla J(n) = \text{ stochastic gradient} \]

Substituting the estimate of the gradient in Steepest descent equations one obtains:

\[\omega(n+1) = \omega(n) - \mu \frac{\partial J(\omega)}{\partial \omega} \bigg|_{\omega=\omega(n)} = \\
= \omega(n) - \mu \nabla J(n) = \omega(n) + \mu \mu(n) \cdot \epsilon^*(n) \]

One identifies three steps in the LMS algorithm:

1° Filtering,

\[y(n) = \omega^H(n) \cdot \mu(n) \]

2° Estimation of error

\[e(n) = d(n) - y(n) \]

3° Update of tap-weights

\[\omega(n+1) = \omega(n) + \mu(n) \cdot \epsilon^*(n) \]
Signal flow graph for LMS algorithm:

1) M - multiplications, $H-1$ - addition
2) I - addition
3) I - multiplications
4) M - multiplications
5) M - additions

$2M+1$ multiplications, $2M$ - additions per each iteration.

Therefore, the complexity of the algorithm is $O(M)$ - increase linearly with an increase of the filter's size. From the practical standpoint a very desirable property.

- Instantaneous estimates of P & P have large variances
- Due to its recursive nature, the algorithm is self-correcting
- LMS can be applied in:
 - Stochastic environment (same as steepest descent)
 - Deterministic environment (from linear regression = Adaline - neural network)
 - Non-stochastic environment (tracking applications)
Stability of the LMS algorithm

LMS algorithm is built around linear combiner.
LMS filter is a complex and nonlinear estimator.

Consider the update equation for LMS filter:

\[\omega(n+1) = \omega(n) + \mu y(n) e^*(n) \]

Assume \(\omega(0) = 0 \). Then

\[\omega(1) = \omega(0) + \mu y(0) e^*(0) = \mu y(0) e^*(0) \]

\[\omega(2) = \omega(1) + \mu y(1) e^*(1) = \mu y(0) e^*(0) + \mu y(1) e^*(1) \]

\[= \mu \sum_{i=0}^{n-1} y(i) e^*(i) \]

\[\omega(n) = \mu \sum_{i=1}^{n-1} y(i) e^*(i) = \mu \sum_{i=0}^{n-1} y(i) \left[d(i) - \omega^H(i) y(i) \right]^* \]

The output of the filter:

\[y(n) = \omega(n) u(n) = \left(\mu \sum_{i=0}^{n-1} y(i) \left[d(i) - \omega^H(i) y(i) \right]^* \right) u(n) \]

\[= \frac{1}{2} \left[\begin{bmatrix} y(1) \end{bmatrix} \sum_{i=0}^{n-1} y(i) \right] \Rightarrow \text{nonlinear function of an input sequence} \]

Since output is a nonlinear function of the input sequence, the superposition does not apply. In other words:

\[u_1(n) \rightarrow y_1(n), \quad u_2(n) \rightarrow y_2(n), \quad i = 1, 2 \]

\[y_1(n) \neq y_2(n) \]
For LMS algorithm does not apply.

\[u(n) = u_1(n) + u_2(n) \neq y_1(n) + y_2(n) \]

- Due to nonlinearity analysis of convergence is extremely complex.
- Shall open research issue
- Only recently a bound on \(\mu \) has been derived (necessary)

\[0 < \mu < \frac{2}{M \cdot S(w)} \text{, for all } \omega \text{ and } \text{range } H \]

That is

\[0 < \mu < \frac{2}{M \cdot \text{Smax}} \text{, Smax maximum value of } u(n) \text{, PSD } (x) \]

where \(S(w) = \text{DFT} \{ u(n) \} \)

\[S(w) = \sum_{k=1}^{M} \mu(k) e^{-j\frac{2\pi k}{M}} \text{ (Bhulkade result)} \]

- Practical applications of the result in (x) are limited
- Usually \(\mu \) is set on a basis of experimentation (previous experience)
- One commonly used guideline

\[\mu = 0.1 \cdot \frac{2}{M \cdot E[u(n)^2]} = 0.1 \cdot \frac{2}{M \cdot P_u} \]

where \(M \) - number of taps.
\(P_u \) - power of the signal

One recognizes, \(M \cdot P_u \approx \text{max} \{ P \} \)
Some applications of the LMS algorithm

- Evaluation of complex communication channel
- Adaptive deconvolution
- Instantaneous frequency measurements
- Adaptive multi-pole cancellation of sinusoidal signal
- Adaptive tone enhancer
- Adaptive beamforming

Homework problem

1) Demonstrate that

\[
\hat{\theta}(n) = \frac{\epsilon(n)}{|\epsilon(n)|^2}
\]

\[\epsilon(n)\] - Instantaneous error