1. Answer any FIVE questions. Precise and complete answers are a must for full credit. Show all your work. Calculators are NOT allowed.

1. State/ Define the following precisely. (5 x 1 = 5)

 (i) Cauchy Sequence: A sequence \(\{a_n\} \) is said to be Cauchy if for every \(\varepsilon > 0 \) there exists a \(N \) such that \(|a_n - a_m| < \varepsilon \) for all \(n, m \geq N \).

 (ii) \(\lim_{n \to \infty} a_n = -\infty \) if for every \(M > 0 \), there exists a \(N \) such that \(a_n < -M \), for all \(n \geq N \).

 (iii) \(\{a_n\} \) converges to \(A \) with rate of convergence \(\mathcal{O}(b_n) \) if and only if \(|a_n - A| \leq K |b_n| \) for sufficiently large values of \(n \) and some positive constant \(K \).

 (iv) \(\liminf_{n \to \infty} a_n \) where \(\{a_n\} \) is a bounded sequence: Let \(T \) be the set of all subsequential limits of \(\{a_n\} \). \(\inf T \) is called the limit inferior of \(\{a_n\} \).

 (v) Bolzano-Weierstrass Theorem for sequences: Every bounded sequence has a convergent subsequence.

2. Let \(\{a_n\} \) be a sequence such that every subsequence of \(\{a_n\} \) converges. Prove that \(\{a_n\} \) converges.

 Solution: Since \(\{a_n\} \) is a subsequence of itself, \(\{a_n\} \) converges! (5 points)

3. Let \(\{a_n\} \) be a Cauchy sequence. Suppose that \(S = \{a_n | n \in \mathbb{N}\} \) is finite. Show that \(\{a_n\} \) is an eventually constant sequence.

 Solution: Let \(S = \{a_1, a_2, \ldots, a_k\} \) and \(\varepsilon = \min |a_i - a_j| \) for \(i, j = 1, \ldots, k, i \neq j \). For this \(\varepsilon \) there exists a \(N \) so that \(|a_n - a_N| < \varepsilon \) for all \(n \geq N \). Since both \(a_n, a_N \in S \) this cannot happen unless \(a_n = a_N \) for all \(n \geq N \). Thus, \(a_n \) is an eventually constant sequence. (5 points)

4. Define the sequence \(\{a_n\} \) recursively by

 \[a_{n+1} = \frac{1}{2} \left(a_n + \frac{\pi}{a_n} \right), \]

 with \(n \in \mathbb{N} \) and with \(a_1 = 1 \). Prove that \(\{a_n\} \) converges to \(\sqrt{\pi} \).

 Solution: \(a_{n+1} = \frac{1}{2} \left(a_n + \frac{\pi}{a_n} \right) = \frac{a_n^2 + \pi}{2a_n} \geq \sqrt{\pi}, \ n \geq 1 \). So, \(a_n \)'s are bounded below. And, \(a_{n+1} - a_n = \frac{\pi - a_n^2}{2a_n} \leq 0, \ n \geq 2 \). Hence, \(\{a_n, n \geq 2\} \) is monotone decreasing. Thus, \(\{a_n\} \) converges. Let \(\lim_{n \to \infty} a_n = L (\neq 0) \). Then, taking the limit as \(n \to \infty \) in the given relation we get \(L = \frac{L^2 + \pi}{2L} \). Solving for \(L \) we get \(L = \sqrt{\pi} \). (5 points)
5. Suppose that \(\{a_n\} \) converges to a nonzero number and a sequence \(\{b_n\} \) is such that \(\{a_n b_n\} \) converges. Prove that \(b_n \) must converge.

Solution: Let \(\lim_{n \to \infty} a_n = A \), \(\lim_{n \to \infty} a_n b_n = C \). Claim that \(b_n \) converges to \(C/A \). Consider,

\[
| b_n - \frac{C}{A} | = \left| \frac{a_n b_n - C}{a_n} \right|
= \left| \frac{(a_n b_n)A - a_n C}{a_n A} \right|
= \left| \frac{(a_n b_n)A - CA + CA - a_n C}{a_n A} \right|
\leq \left| \frac{(a_n b_n) - C}{a_n} \right| + \left| \frac{C}{a_n} \right| \left| a_n - A \right|
\]

There exists a \(n_1 \) such that for all \(n \geq n_1 \), \(|a_n| > \frac{|A|}{2} \) use this and make the terms \(|(a_n b_n) - C| \) and \(|a_n - A| \) suitably small to conclude that \(|b_n - \frac{C}{A}| < \varepsilon \). \(\quad \) (5 points)

6. Bonus Question: Find \(\lim \sup_{n \to \infty} r^n \) if (i) \(0 < r < 1 \) (ii) \(r = 1 \) (iii) \(r > 1 \)

Solution:
(i) If \(0 < r < 1 \) then \(a_n = r^n \to 0 \). So \(\lim \sup_{n \to \infty} r^n = 0 \).
(ii) If \(r = 1 \), then \(a_n = r^n \to 1 \). So \(\lim \sup_{n \to \infty} r^n = 1 \).
(iii) If \(r > 1 \) then \(\lim \sup_{n \to \infty} r^n \) doesn’t exist.