1. Solve the separable ODE \(yy' = (t - 1)e^{-y^2} \), and find the solution that satisfies the initial condition \(y(0) = 1 \). [5]

2. Consider the ODE \((e^{(x+y)} + ye^y) \, dx + (xe^y - 1) \, dy = 0\).

 (a) Show that the given ODE is not exact.

 (b) Show that \(e^{-y} \) is an integrating factor for the ODE.

 (c) Make the ODE exact by using the integrating factor given above and find its general solution. [3 + 2 + 5]

3. Solve the Bernoulli’s equation \(y' = y - 2y^2 \) and find the solution that satisfies the initial condition \(y(0) = 1 \). [4 + 1]

4. Find the general solution of the fourth order homogeneous linear ODE: \(y^{(4)} - 8y' = 0 \). [6]

5. If \(i, -i, -i, 2 + \sqrt{5} \) are the roots of the auxiliary equation of a linear homogeneous 5th order ODE with real coefficients, write the general solution of the ODE. [4]