1. Solve

\[y'(x) = \frac{3y^2 - x^2}{2xy}. \]

(1)

Let

\[y = vx \]

(2)

\[\frac{dy}{dx} = v + x \frac{dv}{dx} \]

(3)

Substituting (2) and (3) in (1), we get

\[x \frac{dv}{dx} = \frac{v^2 - 1}{2v}. \]

By separation of variables, we have,

\[\frac{2v}{v^2 - 1}dv = \frac{dx}{x}. \]

Integrating both sides, we get

\[\ln u = \ln x + \ln c \]
where \(u = v^2 - 1, \ du = 2vdv \) and \(c \) is an arbitrary constant.

Therefore, \(u = cx \).

Hence, \(v^2 - 1 = cx \). Substituting \(v = \frac{u}{x} \) into the above equation, we get,

\[
y^2 = x^2 + c x^3.
\]

2. Solve \(\frac{dy}{dx} = \frac{x^2}{1-y^2}, \ y(0) = 1. \)

By separation of variables, we get

\[
(1 - y^2)dy = x^2dx.
\]

Integrating on both sides, we get,

\[
y - \frac{y^3}{3} = \frac{x^3}{3} + c
\]

where \(c \) is an arbitrary constant. By the initial condition, we obtain \(c = \frac{2}{3} \). Therefore,

\[
y - \frac{y^3}{3} = \frac{x^3}{3} + \frac{2}{3}.
\]