1. Find the radius and interval of convergence for the series \(\sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!} \). Show that the McLaurin series for \(e^{-x} \) converges to the given series.

Hint: Find McLaurin series expansion for \(e^{-x} \) and use remainder theorem to show the convergence.

2. Using alternating series test to show that \(\sum_{k=2}^{\infty} (-1)^k \frac{k}{k \ln k} \) converges. Using the integral test check the conditional convergence of the given series.

3. Evaluate \(\int_{0}^{\infty} \frac{5}{x^2 + x - 2} \, dx \).

4. Find the volume of the solid generated by revolving \(x = \sin^2 y \) about \(x = 1 \) between 0 and \(\frac{\pi}{2} \).

5. Find the area of the surface generated when the curve \(y = x^2 \) from \(x = 0 \) to \(x = 1 \) is revolved about \(x \)-axis.

6. Find the area of the region enclosed by \(y = \ln x \), \(x = e \) and the \(x \)-axis.