A solution of the Bessel equation of order zero, that is \(Y_0(\infty) \) from \(Y_0(x) \) is given by:

\[
Y_0(x) = \frac{2}{\pi} \left[(\ln x^2 + 3) J_0(x) + \frac{x^2}{2^2} - \frac{x^4}{2^4 2^2} (1 + \frac{1}{2}) \right.
\]

\[
+ \frac{x^6}{2^6 4^2 2^2} (1 + \frac{1}{2} + \frac{1}{3}) - \ldots \left. \right] \]

\(Y_0(x) \) is known as Weber's Bessel function of second kind of order zero.

\[Y = 0.5772 \ldots \text{ Eul:er's constant} \]

Note that, \(Y_0(x) \) is unbounded as \(x \to 0^+ \).

A general solution of the Bessel equation of order zero is given by \(Y(x) = A J_0(x) + B Y_0(x) \). Thus \(A \) and \(B \) are arbitrary constants. Any solution for which \(B \neq 0 \) is unbounded as \(x \to 0^+ \).

Recurrence relations

\[
\frac{d}{dx} \left(x^n J_n(x) \right) = -n x^n J_{n+1}(x) \]

We know \(J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{n+2k}}{k! (n+k)!} \), \(n = 0, 1, 2, \ldots \)

So,

\[
\frac{d}{dx} \left(x^n J_n(x) \right) = \frac{d}{dx} \left[\sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{2k}}{k! (n+k)!} \frac{x^{2k}}{2^{n+2k}} \right]
\]

\[
= \sum_{k=1}^{\infty} \frac{(-1)^k}{k! (n+k)!} \frac{k x^{2k-1}}{2^{n+2k-1}}
\]

\[
= \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k-1)! (n+k)!} \frac{x^{2k-1}}{2^{n+2k-1}}
\]

\[
= \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k! (n+k+1)!} \frac{x^{2k+1}}{2^{n+2k+1}}
\]
\[= -x^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k! (n+1+k)} \frac{x^{n+1+2k}}{2^{n+1+2k}}\]

\[= -x^n J_{n+1}(x).\]

\[
\frac{d}{dx} (x^n J_n(x)) = -x^n J_{n+1}(x), \quad n = 0, 1, 2, \ldots
\]

For \(n = 0 \), we have \(J_0'(x) = -J_1(x) \).

(2) \[
\frac{d}{dx} (x^n J_n(x)) = x^n J_{n-1}(x), \quad n = 1, 2, \ldots
\]

Integrating (2), we get \[
\int_0^x s^n J'(s) ds = x^n J_n(x), \quad n = 1, 2, \ldots
\]

For \(n = 1 \), \[
\int_0^x s J_0(s) ds = x J_1(x)
\]

Reduction Formula

(4) \[
\int_0^x s^n J_0(s) ds = x^n J_1(x) + (n-1) x^{n-1} J_0(x) - (n-1)^2 \int_0^x s^{n-2} J_0(s) ds.
\]

(5) \[x \bar{J}_n(x) = n \bar{J}_n(x) - x \bar{J}_{n+1}(x), \quad n = 0, 1, 2, \ldots\]

(6) \[x \bar{J}_n(x) = -n \bar{J}_n(x) + x \bar{J}_{n-1}(x), \quad n = 1, 2, \ldots\]

(7) \[x \bar{J}_{n+1}(x) = 2n \bar{J}_n(x) - x \bar{J}_{n-1}(x), \quad n = 1, 2, \ldots\]
The Zeros of \(J_0(x) \)

Consider \[x^{-2} y'' + y'(x) + x y(x) = 0. \] Bessel Equation of order zero.

Let \[y = x^{1/2} u(x); \quad y'(x) = x^{-1/2} u'(x) - \frac{1}{2} x^{-3/2} u(x) \]

\[y''(x) = x^{-1/2} u''(x) - \frac{1}{4} x^{-3/2} u'(x) + \frac{3}{4} x^{-5/2} u(x) \]

\[x y'' + y'(x) + x y(x) \]

\[= x^{1/2} u'' - x^{-1/2} u'(x) + \frac{3}{4} x^{-3/2} u'(x) \]

\[- \frac{1}{4} x^{-3/2} u(x) + x^{1/2} u(x) = 0. \]

\[\Rightarrow x^{1/2} u'' + \frac{1}{4} x^{-3/2} u'(x) + x^{1/2} u(x) = 0. \]

\[\Rightarrow x^2 u'' + (x^2 + \frac{1}{4}) u(x) = 0. \]

Clearly, \(u(x) = \sqrt{x} J_0(x) \) is a solution of the above equation.

Lemma: The positive zeros of the function \(J_0(x) \), or the positive roots of the equation \(J_0(x) = 0 \), form an increasing sequence of numbers \(x_j \) \((j = 1, 2, \ldots)\) such that \(x_j \to \infty \) as \(j \to \infty \).

Proof: Discussed in the lecture.

\[J_0(x_j) = 0. \]

\[x_1 = 2.405, \quad x_2 = 5.520, \quad x_3 = 8.654, \quad x_4 = 11.79 \]

Theorem: Let \(n \) be any fixed nonnegative integer, \(n = 0, 1, 2, \ldots \)

The positive zeros of \(J_n(x) \) or positive roots of \(J_n(x) = 0 \)

form an increasing sequence of numbers \(x_j \) \((j = 1, 2, \ldots)\) such that \(x_j \to \infty \), as \(j \to \infty \).