1. Precise and complete answers are a must for full credit.

2. Show all your work. Calculators are NOT allowed.

1. Use Gram-Schmidt process to transform the basis \(B = \{(1, 1, 1), (-1, 1, 0), (1, 2, 1)\} \) of \(\mathbb{R}^3 \) into an orthonormal basis. \([10] \)

2. Find the eigenvalues of \(A = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix} \) and their algebraic and geometric multiplicities. \([12] \)

3. Find a matrix \(P \) that diagonalizes \(A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix} \) and find a matrix \(D \) that is similar to \(A \). \([10] \)

4. Let \(A = \begin{bmatrix} 4 & 16 & 8 & 8 \\ 0 & 0 & 5 & 15 \\ 0 & 0 & 4 & 9 \\ 1 & 4 & 2 & 2 \end{bmatrix} \); \(R = \begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \); \(C = \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{4} \\ 0 & 1 & 0 & \frac{3}{5} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \).

The reduced row echelon form of \(A \) is \(R \) and the reduced row echelon form of \(A^T \) is \(C \).

Find a basis for each of the following spaces: \([5+5+4+4] \)

(a) column space of \(A \)
(b) row space of \(A \) consisting of the row vectors of \(A \)
(c) null space of \(A \)
(d) null space of \(A^T \).

5. Determine whether the linear operator \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined by the equations

\[
\begin{align*}
w_1 &= x_1 + 2x_2 \\
w_2 &= x_1 + x_2
\end{align*}
\]

is one-one. If it is one-one, find the inverse operator \(T^{-1} \). \([8] \)
6. Let \(T : \mathbb{R}^n \to \mathbb{R}^n \) be a linear transformation. Prove that \(T \) is one-one if and only if \(\ker(T) = \{0\} \). [8]

7. Confirm that the matrix \(A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{2}{\sqrt{6}} \end{bmatrix} \) is orthogonal and find its inverse. [8]

8. Find the determinant of the matrix

\[
\begin{bmatrix}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{bmatrix}
\] . [8]

9. Find a \(LDU \)-decomposition of \(A = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 0 & 2 \\ 2 & 2 & 1 \end{bmatrix} \). [10]

10. Use matrix multiplication to find the image of the point \((4,3) \) under the transformation of reflection about the line through origin that makes an angle of \(\theta = \frac{\pi}{4} \) with the positive \(x \) axis. [8]

Education is for Life not just for a living.