The formula is centered around a different equation of view.

\[\text{or,} \quad X_1 + S + r = \ldots (\text{H}_{1-2} \cdot \text{P} - S) \]

Show that this process gives either directly that the paper is open

\[X_1 + S + r = \ldots (\text{H}_{1-2} \cdot \text{P} - S) = \ldots X \]

where

\[\begin{bmatrix} \alpha & X_1 + S + r \\ \mu & \lambda \end{bmatrix} = X \]

Similarly, if and are both necessary, prove that

\[X_1 + S + r = \ldots (\text{H}_{1-2} \cdot \text{P} - S) = \ldots X \]

where

\[\begin{bmatrix} \alpha & X_1 + S + r \\ \mu & \lambda \end{bmatrix} = X \]

where \(\alpha \) and \(\beta \) are proportional to each other.

\[\begin{bmatrix} S & \alpha \\ \beta & d \end{bmatrix} = \lambda \]

If \(\alpha \neq 0 \) is a monotonous, show by induction that for positive integers

Problems 1.6

Miscellaneous Problems

1. Suppose that \(M \) is a linear matrix with \(\text{det} M = 0 \). Find that \(\text{det} M + 1 \).

2. Find all matrices \(B \) for which \(\text{det} B = 0 \).

3. Find all matrices \(A \) for which \(\text{det} A = 0 \).

4. Show by induction that \(\text{det} A_n = \text{det} A \).

5. Let \(a \neq 0 \) be a monotonous, show by induction that for positive integers
\[
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\]

(a) Verify that \(L \) is both a left and a right-inverse of \(A \).
(b) Show that for matrices \(A \) and \(D \):

\[
L \bigoplus 0 = 0 \bigoplus L
\]

(c) Let \(A \) and \(L \) be matrices, and \(D \)

\[
\begin{pmatrix}
A & D \\
\end{pmatrix}
\]

\[
= L
\]

(d) Show that for all matrices \(L \) and \(D \)

\[
\begin{pmatrix}
L & D \\
\end{pmatrix}
\]

\[
= L
\]

(e) Let \(A \times L \) be the product of the matrices \(A \) and \(L \). Show that for all matrices \(L \) and \(D \)

\[
\begin{pmatrix}
L & D \\
\end{pmatrix}
\]

\[
= L
\]

(f) Consider the kronecker product \(A \otimes C \) defined in Problem 10 of Section 1.1.

\[
A \otimes C
\]

\[
= C
\]

(g) Consider the symmetric matrix \(L \times L \times L \) and its inverse.

\[
L
\]

\[
= L
\]

(h) Consider the kronecker product \(A \otimes C \) defined in Section 1.1.

\[
A \otimes C
\]

\[
= C
\]

(i) Consider the kronecker product \(A \otimes C \) defined in Section 1.1.

\[
A \otimes C
\]

\[
= C
\]

(j) Consider the kronecker product \(A \otimes C \) defined in Section 1.1.

\[
A \otimes C
\]

\[
= C
\]

(k) Consider the kronecker product \(A \otimes C \) defined in Section 1.1.

\[
A \otimes C
\]

\[
= C
\]

(l) Consider the kronecker product \(A \otimes C \) defined in Section 1.1.

\[
A \otimes C
\]

\[
= C
\]