Show that the following two expressions of the differential form of the continuity equation are identical:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \]
\[\frac{D\rho}{Dt} + \rho (\nabla \cdot \mathbf{V}) = 0 \]

IF IDENTICAL EQ. 1 IS EQUAL TO EQ. 2

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \frac{D\rho}{Dt} + \rho (\nabla \cdot \mathbf{V}) \]

EQ. 1

EQ. 2

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \nabla \cdot \mathbf{V} \]

THEY ARE EQUAL

SEE SECTION 2.10

Simplify Equation 1 for the conditions that the flow is *steady* and *incompressible*. Will your result change if the additional condition of inviscid flow is applied?

EQ. 1:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \]

IF STEADY

\[\frac{\partial \rho}{\partial t} = 0 \]

IF INCOMPRESSIBLE

\[\rho = \text{CONSTANT} \]

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{V} = 0 \]

\[\nabla \cdot \mathbf{V} = 0 \]

WILL NOT BE INFLUENCED BY VISCOSITY (FRICTION)

NOTE: BE CAREFUL

\[\frac{\partial \rho}{\partial t} + \frac{D\rho}{D\bar{t}} = \frac{d\rho}{dt} \]

PARTIAL OR "LOCAL" DERIVATIVE

TOTAL DERIVATIVE

READ SECTIONS:

2-9 AND 2-10