Leonard Nelson: A Theory of Philosophical Fallacies. Translated by Fernando Leal and David Carus (Argumentation Library, Vol. 26)
Springer, Cham, Switzerland, 2016, vi + 211 pp

Leonard Nelson (1882–1927) is a fascinating but neglected figure. He represents a minority tradition within post-Kantian German philosophy that anticipates much later developments in Anglophone analytic philosophy. Specifically, Nelson saw himself as a posthumous disciple of Jakob Friedrich Fries (1773–1843). Almost alone amongst Kant’s nineteenth-century interpreters, Fries stressed the methodological aspects of Kant’s work over its metaphysical implications. Fries’s influence faded fast after his death, and his work was little known when Nelson encountered it as a student. Nelson made it his life’s work to remedy this oversight. Initially, this focus may have imperilled Nelson’s own career: he secured a position at Göttingen only with the intervention of the mathematician David Hilbert, and over the objections of Edmund Husserl and other members of the philosophy faculty (Reid, 1970, p. 122). Nelson’s early death limited his direct influence—and frustratingly prevented what might have been a fruitful interaction with the pioneers of analytic philosophy. However, Nelson had a profound effect on his immediate circle amongst whom his posthumous influence was enduring.

A Theory of Philosophical Fallacies began as a series of lectures, delivered from April to July 1921 under the title ‘Typische Denkfehler in der Philosophie’, or ‘Typical Errors of Thinking in Philosophy’. Although a German edition of Nelson’s collected works was published in nine volumes in the 1970s, this work was omitted, apparently because the task of identifying all of Nelson’s sources defeated the editors (p. 17). Hence the work was not readily available in any form until its recent German publication, edited by Andreas Brandt and Jörg Schroth (Nelson, 2011). The volume under review is an English translation of that edition by Fernando Leal and David Carus with an introduction and annotations by Leal. The more ambitious title of the English edition is Leal’s choice, but it is a happy one: Nelson lays out a bold, unifying account of what he saw as the besetting sins of philosophical reasoning.

Nelson divided his course into 22 lectures which comprise the chapters of the book. Leal supplies each lecture with a helpful abstract summarising its content. In Lecture II, Nelson draws attention to ‘Erschleichung’, the phenomenon he takes to be central to philosophical fallacy, which Leal translates as ‘concept-swapping’. This denotes a form of equivocation whereby a new concept is substituted for an old without changing the term by which the concept is designated. The
other fallacy on which Nelson focuses is false dichotomy. He argues that, when philosophers disagree, they correctly observe that they cannot both be right, but often erroneously assume that they cannot both be wrong. Hence they treat the disjunction of their positions as exhaustive when it is merely exclusive. For Nelson, these two fallacies, special cases of equivocation and false dichotomy, are not strictly distinct, since the former inevitably leads to the latter. In Lectures VII, VIII and IX, he illustrates this thesis by way of a reconstruction of Kant’s defence of the synthetic a priori. Before Kant, Nelson relates, philosophers had effectively equivocated between the analytic and the a priori and between the synthetic and the a posteriori, thereby conflating the exhaustive disjunctions of analytic or synthetic and a priori or a posteriori. This led them to treat analytic a priori or synthetic a posteriori as an exhaustive disjunction too. Kant saw through the confusion and identified this as a false dichotomy. Subsequent lectures develop Nelson’s account through discussion of other instances of this pattern of argument that he identifies in the philosophy of science and mathematics, ethics and the philosophy of law. Lest we imagine that Nelson took Kant to be above criticism, Leal includes as an appendix a short extract from an earlier work of Nelson’s in which he identifies the same sort of fallacy in Kant.

The book should hold significant interest for argumentation theorists for several distinct reasons. Firstly, as I shall discuss in Sec. 2, it is a serious engagement with the dialectic of philosophical method that holds its value despite the near century that has elapsed since its composition. Secondly, as Leal observes, Nelson is innovative in his repeated use of diagrams to represent the structure of the arguments that he is critiquing. Nelson’s exact position in the history of logical diagrams is a fascinating question in its own right, which I turn to in Sec. 3. Lastly, what are we to make of Nelson’s central thesis, that equivocation is the root of all philosophical fallacy? In Sec. 4, I shall explore how this claim might be evaluated.

2.

A key feature of Nelson’s account of philosophical fallacy is the centrality of ‘concept-swapping’, the process whereby one concept is substituted for another in the course of an argument, without the audience (or perhaps even the arguer) realising what has happened. In German philosophy, this phenomenon is referred to as Erschleichung, a translation of the Latin legal term subreptio. The corresponding English term subreption has had much less currency. Nonetheless the phenomenon has been widely discussed—under many different terms. For example, consider persuasive definition, in which the ‘descriptive’ meaning of a term is changed while the ‘emotive’ meaning is preserved (Stevenson, 1938); dissociation, in which a concept is subdivided into two (Perelman and Olbrechts-Tyteca, 1969; van Rees, 2008); monster barring, in which a term is arbitrarily redefined to exclude an apparent exception to a conjecture (Lakatos, 1976, p. 23); the no true Scotsman move, in which the monster is barred by a dissociation of the concept into ‘true’ cases and others (Flew, 1975, p. 47); and motte and bailey doctrines, ostensibly controversial and bold positions (the bailey) whose advocates retreat to a dull but defensible interpretation (the motte) when challenged (Shackel, 2005, p. 298). Little work has been done to connect these different but closely related devices.

1For the history of this term, Leal cites the monograph (Birken-Bertsch, 2006), which is unavailable in English, but see (Pozzo, 2008).
or to relate their importance to philosophical argumentation (but see Aberdein, 2006, pp. 158 ff.). Hence the translation of Nelson’s work is to be welcomed as an invitation to bring to bear the more focussed German treatment of Erschleichung on Anglophone argumentation theory.

The other distinctive aspect of Nelson’s account is his treatment of false dichotomy. Nelson criticises philosophers for treating pairs of contrary statements, which cannot both be true, as though they were contradictory. Since contradictory statements cannot both be false either, exactly one of them must be true, so their disjunction is genuinely exhaustive. This phenomenon, the pragmatic strengthening of contraries into contradictories, has been studied for a long time. Laurence Horn, in his survey of the manoeuvre, credits to the nineteenth-century logician Bernard Bosanquet the dictum that ‘The essence of formal negation is to invest the contrary with the character of the contradictory’ (Bosanquet, 1888, p. 306). Horn frames this in terms of a pragmatic principle that he calls ‘MaxContrary: Contrariety tends to be maximised in natural language. Subcontrariety tends to be minimised in natural language’ (Horn, 2015, p. 244). As in Nelson’s analysis, this is understood to instantiate an implicit appeal to disjunctive syllogism ($p \lor q, \neg p \therefore q$):

(i) “O” speakers assertion
(ii) $A \lor E$ assumption of excluded middle (disjunction between contraries)
(iii) $\neg A$ from (i) by definition of contradictory opposition
(iv) E from (ii), (iii) by disjunctive syllogism (Horn, 2015, p. 262).

The suspect (exhaustive) disjunction at (ii) licences the illicit move from the uncontroversial (i) to the much stronger (iv). Horn exhibits this phenomenon in a diverse range of contexts as a widespread feature of the pragmatics of natural language. This suggests that the move Nelson diagnosed in philosophical discourse is actually a symptom of a broader problem—a tempting but unreliable inferential shortcut. As with subreption, this material has yet to be fully assimilated into argumentation theory: important work remains to be done.

3.

A notable feature of Nelson’s presentation is the role played by diagrams. For example, Nelson’s analysis of Kant’s defence of the synthetic a priori is accompanied by the diagram in Fig. 1. The upper left and upper right boxes represent the starting positions of the two opposed parties, and the box at the top the shared presupposition that they rely on in deriving their conclusions in the lower left and lower right boxes respectively. Nelson (and Kant) proposes that they should instead reject this presupposition, leading to the proposition at the bottom, which follows from the conjunction of the two starting positions.

Nelson’s own diagrams are always specific to a particular example, but Leal reconstructs as Fig. 2 what he takes to be the ‘general form of a Nelson diagram’ (p. 3). In Nelson’s manuscript the boxes are connected by lines, not arrows: the arrowheads are Leal’s addition. Although this is intended to bring out the resemblance to box–arrow diagrams, there is an obvious difference: pairs of converging arrows must be read as indicating arguments whose propositions are linked (not, as modern usage would suggest, convergent). Thus, in Fig. 2, $P \lor Q$ and $\neg P$ imply Q, by disjunctive syllogism, and similarly $P \lor Q$ and $\neg Q$ imply P.

2 Although I had to resist the temptation to change Nelson’s diagrams to make them even more similar to modern usages, arrows were added to indicate the direction of the reasoning involved’ (p. 14).
Every judgment is either logical or empirical

The axioms of geometry do not stem from experience

The axioms of geometry do not stem from logic

The axioms of geometry stem from logic

The axioms of geometry stem from experience

The axioms of geometry stem neither from experience nor from logic

Figure 1. ‘Logicism versus empiricism in geometry: An incomplete disjunction’ (p. 80)

Lastly, \(\neg P \) and \(\neg Q \) imply \(\neg(P \lor Q) \). Leal maintains that ‘in spite of this obvious formal defect of his diagrams, Nelson was clearly a pioneer in argument mapping’ (p. 79, n. 6). Just how much of a pioneer was Nelson? Although the inspiration for the modern use of box–arrow diagrams can be firmly attributed to (Beardsley, 1950), which significantly postdates Nelson, there are some earlier anticipations, such as Wigmore in 1913 or Whately in 1836, which Nelson may in principle have seen (Reed et al., 2007, pp. 100; 93). There is no evidence that Nelson was aware of either man’s work. However, he can hardly have been unaware of a much earlier diagrammatic representation of relationships between propositions: the square of opposition. Specifically, at least on Leal’s reconstruction, Nelson’s hexagonal diagrams are formally equivalent to a generalisation of the square of opposition often referred to as Blanché’s hexagon.\(^3\) Nelson apparently arranged the nodes

\(^3\)For the French logician Robert Blanché whose version of the hexagon is best known. However, Blanché was anticipated by his fellow countryman Augustin Sesmat and by the American Paul Jacoby (Jacoby, 1950). Earlier versions of the hexagon may yet be uncovered. As one commentator has observed, ‘Blanche’s hexagon was up to very recently part of an esoteric folklore’ (Béziau, 2012, p. 2).
of his diagrams such that ‘the lines represent a logical derivation that is always directed from top to bottom’ (p. 79, n. 6), a convention Leal’s arrows are intended to make explicit. However, if we suspend this convention, we may rearrange the nodes so as to make the hexagonal structure clearer. By ‘untwisting’ the left and right pairs of propositions in Fig. 2, ¬P and Q, and ¬Q and P, and reversing the directions of the arrows, the edges can be rearranged into the perimeter of a hexagon of opposition (Fig. 3).

![Figure 3. A hexagon of opposition corresponding to a Nelson diagram](image)

Following (Béziau, 2012), the red lines indicate contradictories; the blue lines indicate contraries; and the green lines indicate subcontraries, pairs of propositions that cannot both be false. Granting that P and Q are contraries, as Leal assumes in his reconstruction of Nelson (p. 3), then all of these relationships must obtain. The black lines correspond to the edges of Nelson’s diagram, but their arrows have changed direction. They now indicate subalternation, an immediate inference (so the confusion of the linked/convergent distinction in Fig. 2 no longer arises). The inferences leading to P ∨ Q and from ¬(P ∨ Q) are logically necessary. The two inferences at the sides are contingent, but they follow from the assumption that P and Q are contraries. The parallelism between Nelson’s diagram and the hexagon of opposition is reinforced by their application to the same problem: Kant’s treatment of the synthetic a priori, by which Nelson’s account was inspired. Jean-Yves Béziau proposes a ‘Kantian Hexagon’ (Fig. 4) which corresponds to Nelson’s picture (Fig. 1) exactly as Fig. 3 corresponds to Fig. 2 (Béziau, 2012, pp. 27 f.).

So is Nelson’s hexagon yet another anticipation of Blanché? Perhaps not. Although Nelson’s basic diagram is hexagonal and easily transformable into a Blanché hexagon, he sometimes generalizes it to seven or eight vertices (for example, pp. 97; 199). And, more significantly, despite the assumption that Leal makes in constructing Fig. 2, some of Nelson’s examples do not assume the contrariety of P and Q, blocking the equivalence to a Blanché hexagon (for example, p. 186). Nonetheless, the relationship between the two diagrams is at least a fascinating coincidence and certainly warrants further investigation.

Many readers of this journal may be struck with a sense of déjà vu in reading of Nelson’s central claim, that all (philosophical) fallacies are ultimately grounded
in equivocation, for this thesis strikingly foreshadows Larry Powers’s ‘One Fallacy theory’, which holds that all fallacies are instances of equivocation (Powers, 1995a,b). Leal notes that both of the anonymous readers for the Argumentation Library drew his attention to Powers, but he does not explore the resemblance further (p. 10, n. 7). Indeed, Powers’s work also shares with Nelson’s an origin in the study of philosophers’ arguments: Powers writes that ‘To understand the One Fallacy theory, one has to first understand the theoretical context in which it arose. It did not start life as a separate theory about fallacies but as a part of a theory of philosophical method’ (Powers, 1995b, p. 303, alluding to Powers, 1986). This suggests that Powers’s work may be a valuable adjunct to Nelson’s account. Leal observes that ‘any serious critical reading of this book’ must determine ‘whether other fallacious argument schemes proposed by philosophers can be reduced to Nelson’s’ (p. 11). Neither Nelson nor Leal attempts this task—but Powers, in defence of his similar theory, does. Powers’s general strategy is to argue that types of fallacy allegedly distinct from equivocation are not, strictly speaking, fallacies. However, some of their tokens may be genuinely fallacious, since trading on hidden equivocations: ‘there is no fallacy unless there is a clearly specifiable appearance of validity (or goodness of whatever kind). Since I believe there is no clear way to make an argument appear to have a goodness it really lacks except by playing with ambiguities, every real fallacy will turn out to be a fallacy of equivocation’ (Powers, 1995a, p. 290). This tactic would seem to be available to Nelson too.

In sum, despite its belated appearance, this book makes a salutary contribution to several enduring debates in the analysis of argument. Its translation into English is to be welcomed.

References

