Example: Using Erlang B table determine the amount of traffic that can be supported at 8% of 24% in a

1) Omnidirectional configuration with 24 voice channels
2) In sector configuration at 12 voice channels per sector

Using Erlang B table: 60% = 24 C = 12

\[A = 21.9 \quad A_{\text{sector}} = 6.61 \]
\[A_{\text{cell}} = 19.83 \]

Loss of ranking efficiency \(L = \frac{A(\text{omni}) - A(\text{sector})}{A(\text{omni})} = \frac{21.9 - 19.83}{21.9} = 9.43\% \)

Example: Consider GSM deployment in 5 MHz of spectrum. Calculate the maximum capacity per cell if the system is deployed with

a) \(N = 7 \) in omnidirectional configuration
b) \(N = 4 \) in tri-sectored configuration

Assume 100 kHz quad bands.

Voices = \(\frac{5000 \text{ kHz} \times 5 \times 100 \text{ kHz}}{100 \text{ kHz}} = 24 \text{ channels} \)
a) N=7

\# Channel /cell = \frac{24}{7} = 3.42 Channel /cell (same cells have 3 same cells have 4)

\# trunks /cell = 3.42 \times 8 = 27.36 \Rightarrow 27 \text{ trunks /cell}

Using Elnag and et al. \(6.5 = 5\% \Rightarrow \text{Acell} = 19.8 \text{ E /cell}

b) N=4

\# Channel /cell = \frac{24}{4} = 6 \text{ Channel /cell}

\# channels /sector = \frac{6}{3} = 2 \text{ Channel /sector}

\# trunks /sector = 2 \times 8 = 16 \text{ trunks /sector}

Using Elnag and et al. \(6.5 = 5\% \Rightarrow \text{Asector} = 9.13 \text{ E /sector}

Capacity per cell: \text{Acell} = 2 \times \text{Asector} = 2 \times 9.13 = 18.26 \text{ E /cell}

Increase in cell capacity: \Delta \text{Acell} = \text{Acell}(N=4) - \text{Acell}(N=7)

\Rightarrow \Delta \text{Acell} = \frac{29.44 - 19.3}{19.3} \approx 0.528 \approx 52.8\%

Cell Splitting & Microcell Deployment

* Cell splitting \(\Rightarrow \) divide coverage area of existing cell sites and introducing new smaller cells.
Before cell splitting

After cell splitting

New cell added to perform traffic offloading

New cell serves some portion of the traffic that used to be served by the busy blocking cells.

Example: Section B.4 C in the figure are experiencing high blocking probability. To eliminate traffic congestion, cell split (CS) is proposed. Before the cell split, the configuration had following parameters:

\[
C_B = 10 \quad G_{BS} = 5\%
\]

\[
C_C = 12 \quad G_{BS} = 7\%
\]

Assuming that the traffic is distributed uniformly among

1. BS at Section B.4 C with splitting
2. Required number of resources at S1, S2 and S3 to maintain G_{BS} of 17%

After cell splitting

Offered traffic \(A^o = G_{BS} \)

\(A = 8.91 \) (Using Eqs of B table)
Area of an equilateral triangle \(\Delta \), \(A_\Delta = \frac{a^2 \sqrt{3}}{4} \)

1) Consider sector B,

\[
A_{\text{sector}} = \frac{3}{2} \left(\sqrt{\frac{3}{4}} \right) A_B
\]

It is obvious that \(r = \frac{R}{2} \). Therefore,

\[
A_{\text{sector}} = \frac{3}{2} \left(\frac{R}{2} \right)^2 \frac{\sqrt{3}}{4} = \frac{3}{8} \times 2.22 = 0.83 E
\]

Triangle formed by after cell split

\[A_{B_1} = 6.22 - 2.33 = 3.89 E \]

GOS at B after cell split (using Euler's B, C=10, A=3.89)

GOS_{B_1} ≤ 0.5 %

2) Consider sector C

\[
A_{\text{sector}} = \frac{3}{2} \times 8.61 E = 3.24 E
\]

Optimal value of C after cell splitting

\[A_{C_1} = 8.61 - 3.22 = 5.38 E \]

GOS at C after cell splitting (using Euler's B, C=12, A=5.38 E)

GOS_{C_1} ≤ 1 %
8) Traffic added to new cell

Sewr 51: \[A_1 = \frac{1}{3} \times 2.32 + \frac{1}{2} \times 8.24 = 2.073 E \]

52: \[A_2 = 2.83 = 1.55 E \]

55: \[A_3 = 2/3 \times 3.81 = 2.53 E \]

To achieve 6% ≤ 1% number of channels that needs to be allocated to each of the sectors is given by:

- \[C_1 = 7 \quad (\text{Next } 7\%\; \text{of } 7\%\; \text{of } A = 2.50 E) \]
- \[C_2 = 6 \quad (\text{Next } 6\%\; \text{of } 7\%\; \text{of } A = 1.91 E) \]
- \[C_3 = 2 \quad (\text{Next } 2\%\; \text{of } 7\%\; \text{of } A = 0.23 E) \]

Homeworks