Communication Systems (Lecture 17)

Effects of noise in DSB-SC AM - coherent demodulation

\[\begin{align*}
\text{Baseband} & \quad \hat{2}(t) \\
\text{Antenna} & \quad 2 \tilde{u}(t) \\
\text{FE Filter} & \quad \cos(2\pi f_t t) \\
\end{align*} \]

\[U_{n(t)} = N_0 \delta(t) = A_0 \left[1 + u \cdot u_n(t) \right] \cos(2\pi f_t t) \quad \text{W- modulation index} \]

\[n(t) = n_0(t) \cos(2\pi f_t t) - n_0(t) \sin(2\pi f_t t) \]

\[\text{Power of input} = \left(A_0 \left[1 + u \cdot u_n(t) \right] \cos(2\pi f_t t) \right)^2 = \]

\[= A_0^2 + \frac{u^2 A_0^2}{2} \quad \text{signal} = \frac{A_0^2}{2} + \frac{u^2 A_0^2}{2} \quad \text{noise} \]

Output of the baseband

\[\text{Power of input} = 2W N_0 \quad \text{(same as in the case of the DSB-SC signal)} \]

The processing of the RX

\[z(t) = \left[A_0 \left[1 + u \cdot u_n(t) \right] \cos(2\pi f_t t) + n_0(t) \cos(2\pi f_t t) - n_0(t) \sin(2\pi f_t t) \right] \cos(2\pi f_t t) \]

\[y(t) = \frac{A_0}{2} u \cdot u_n(t) + n_0(t) \]

\[\text{Signal noise} \rightarrow \text{at the baseband} \]
Power of signal

\[P_{\text{signal}} = \left(\frac{A_0}{2} \cdot M \cdot \delta f \right)^2 = \frac{A_0^2}{4} \cdot M^2 \cdot P_m \]

Power of the noise

\[P_{\text{noise}} = \frac{N_0^2}{4} \cdot \delta f \cdot \delta f = \frac{N_0^2}{4} \cdot \delta f \]

Therefore, for DSB-SC AM one obtains

1. \(\frac{S}{N}_{\text{in}} = \frac{A_0^2/2 + M^2 P_m}{2N_0} \) \quad (\text{including power of the carrier})

2. \(\frac{S}{N}_{\text{out}} = \frac{A_0^2 M^2 P_m}{2N_0^2} \quad \frac{A_0^2 M^2 P_m}{2N_0} \)

From (1):

\[\frac{S}{N}_{\text{in}} = \frac{1}{2} \cdot \frac{A_0^2 + A_0^2 M^2 P_m}{2N_0} = \frac{A_0^2}{2N_0} \left(1 + M^2 P_m \right) \]

Therefore \(\frac{A_0^2}{2N_0} = \frac{2(S/N)_{\text{in}}}{1 + M^2 P_m} \)

and

\[\frac{S}{N}_{\text{out}} = \frac{2M^2 P_m}{1 + M^2 P_m} \] \(\frac{S}{N}_{\text{out}} \)

\[\text{RX processing gain} \]
Example: Consider transmission of voice signal using DSB-SC AM modulation with following parameters:

- $M = 0.75$
- $P_m = 1$
- $f_m = 10 kHz$ ($2N$)
- Required $S/N_{out} = 35 dB$
- $N_0 = 4 \cdot 10^{-11}$ W/Hz (Rx noise figure is 10 dB)
- Rx implementing coherent demodulation.

\[X_{[dB]} = 10 \log (X_{[W]}) \quad \text{Example:} \quad a_{[W]} = 50 \]
\[a_{[dB]} = 10 \log (50) = 17 dB \]

\[X_{[W]} = 10 \times X_{[dB]} \quad \text{Example:} \quad a_{[dB]} = 17 dB \]
\[a_{[W]} = 10^{0.1 \times 17} = 50 \]

In this case, required S/N_{out} in linear domain:

\[(S/N)_{out} = 10^{3.75} = 10^{2.5} = 3.63 \]

1) Calculate required (S/N)_in
2) Express (S/N)_in in dB
3) Calculate the required signal power at the RX

For DSB-SC signal:

\[(S/N)_{out} = \frac{2Wf_m}{1 + W^2f_m} (S/N)_{in} \]
Therefore

\[
\frac{(S/N)_m}{2} = \frac{1 + \frac{N}{P_{in}}}{2} (S/N)_{out} = \frac{1 + (0.75)^2}{2(0.75)^2} \cdot 3.162 = 4.293
\]

2) \((S/N)_m \text{ [dB]} = 10 \log \frac{(S/N)_m}{(S/N)_{out}} = 10 \log (4.293) = 36.4 \text{ dB} \)

3) Power of the input signal

\[
(S/N)_m = \frac{\text{Power of signal}}{\text{Power of noise}} = 1393
\]

\[
\text{Power of signal} = 1393 \cdot \text{Power of noise}
\]

\[
\text{Power of noise} = \frac{2N \cdot F \cdot N_0}{2 \text{ bandwidth (BW)}}
\]

\[
\text{PSD of the noise when the NF of the receiver is included (given in the problem)}
\]

\[
\text{Power of noise} = 10 \text{kHz} \cdot 4 \cdot 10^{-7} \text{ W/N} = 4 \times 10^{-4} \text{ W}
\]

\[
\text{Power of signal} = 1.76 \cdot 10^{-6} \text{ W}
\]
Effects of noise in DSB-SC - envelope detection

\[\text{FE filter} \rightarrow \begin{array}{c}
\text{\(y(t) = \frac{v(t)}{2} \)} \\
\text{\(\text{envelope detector} \)} \\
\text{\(\text{DC block} \)}
\end{array} \rightarrow \begin{array}{c}
\text{\(\text{y}(t) \)} \\
\text{\(n(t) \)}
\end{array} \]

\[n(t) = A_0 (1 + w_{n(t)}) \cdot \cos(2\pi f_t t) \]

\[n(t) = n(t) \cdot \cos(2\pi f_t t) - n(t) \cdot \sin(2\pi f_t t) \]

After the FE filter, the signal is given as:

\[r(t) = A_0 (1 + w_{n(t)}) \cdot \cos(2\pi f_t t) + n(t) \cdot \cos(2\pi f_t t) - n(t) \cdot \sin(2\pi f_t t) \]

\[= \left[A_0 + w_{n(t)} \right] \cdot \cos(2\pi f_t t) - n(t) \cdot \sin(2\pi f_t t) \]

Try identity

\[A \cos t + B \sin t = (A^2 + B^2)^{1/2} \cdot \cos (t - \arctan \frac{B}{A}) \]

Therefore

\[r(t) = \left(\left(A_0 + w_{n(t)} \right) + n(t) \right) \cdot \cos \left(2\pi f_t t \right) - n(t) \cdot \sin \left(2\pi f_t t \right) \cdot \left(\frac{\text{n(t)}}{A_0 + w_{n(t)} + n(t)} \right) \]

We shall assume \(A_0 \gg n(t), A_0 \gg n(t) \)

Then, the envelope of the signal becomes

\[e(t) = A_0 \left[1 + w_{n(t)} \right] + n(t) \]

After removing the DC component, signal becomes:
\[y(t) = u(t) + r(t) \]

Therefore

\[(S/N)_{\text{out}} = \frac{u^2 A_0^2 P_{\text{in}}}{2 W_0} \]

\[(S/N)_{\text{in}} = \frac{A_0^2 (1 + u^2 P_{\text{in}})}{4W_0} \]

Finally, one obtains

\[(S/N)_{\text{out}} = \frac{2 u^2 P_{\text{in}}}{1 + u^2 P_{\text{in}}} (S/N)_{\text{in}} \] which is the same expression as in the case of coherent downconversion.

Conclusion: For high input (S/N) ratios, the envelope detector performs similarly to the coherent downconverter. When the (S/N) in is small, the effects of noise become highly nonlinear & quality of the signal degrades rapidly.